

s:fl Schools: Future Labs TEACHER TRAINING COURSE

HANDBOOK

"Knowing is not enough; we must apply. Willing is not enough; we must do." Johann Wolfgang von Goethe

The **"Schools: Future Labs"** project has been funded with support of the European Commission.

Authors

The Teacher Training Course (TTC) based on the draft of the Teacher Training Institute Mazowieckie Samorzadowe Centrum Doskonalenia Nauczycieli (MSCDN) was designed by Gerhard Bach (CLIL consultant to *s:fl*), in cooperation with the *s:fl* project team at Goethe Institut Athens (Sulochana Giesler, Iliana Kikidou, Anna Slavi, Penelope Sotiropulou), as well as all project participants sharing their knowledge and expertise. In particular, we wish to thank the teachers and trainers involved in the project for sharing not only their professionally tested ideas and materials, but also for their input and feedback. For further information and updates please go to http://www.sflabs.eu/, where you can also find more information about the TTC in the *s:fl TTC Repository*.

Schools: Future Labs is an Erasmus+ project (KA2) and has been funded with the support of the European Commission. It aims to unite creativity in Science (Physics, Biology, and Chemistry) and language in years of primary education. It implements a new approach wherein language learning (German / Spanish) and STEM subjects are combined, by applying the STEM/CLIL methodology in the 5th and 6th grade. Duration: Three years (01.09.2014- 31.08.2017)

There are thirteen partners involved in Bulgaria, Greece, Poland and Romania. The partners are:

- Goethe Institut Athen, Greece
- Instituto Cervantes, Athens, Greece
- National and Kapodistrian University of Athens, Greece
- University of Shumen (Department for Information, Qualification and Lifelong Learning), Varna BG
- Mazowieckie Samorzadowe Centrum Doskonalenia Nauczycieli (MSCDN), Poland
- Ministerio de Educacion, Cultura y Deporte, Spain
- Ministerul Educației și Cercetării Științifice, Romania
- Uwekind International School, Bulgaria
- 49th Primary School "Benito Juarez", Bulgaria
- Colegiul National Ion Maiorescu, Romania
- Liceul Teoretic Bilingv Miguel de Cervantes, Romania
- Społeczna Szkoła Podstawowa nr 4 STO, Poland
- Ellinogermaniki Agogi S.A., Greece

The aims of the project are:

- Get the students interested in STEM subjects and in the habit of using a foreign language.
- Make a successful transition to employment in areas vital that ensure competitiveness of the European economies
- Possess transversal skills adaptive to any employment situation
- Encourage student engagement
- Ensure a social and collaborative way of learning and change classroom practice
- Train the trainers and the teachers

Contents

TTC: Purpose, Objectives, Outputs, Activators	4
TTC: Structure, Format	6
TTC: Overview 5 Modules	8
Module M1: Task-Based Learning (TBL)	9
Module M2: Content and Language Integrated Learning (CLIL)	12
Module M3: Science, Technology, Engineering, Maths (STEM)	16
Module M4: Lesson Planning	22
Module M5: Assessment	26
Annex Materials Overview	30

TTC : Purpose, Objectives, Outputs, Activators

Schools: Future Labs (s:fl)

This Teacher-Training Course (TTC) is part of the *Schools: Future Labs* (*s:fl*) project conducted between 2014 and 2017 funded by Erasmus+. The main purpose of this project was to get learners interested in STEM subjects (Science, Technology, Engineering, Mathematics) and to get them into the habit of using a foreign language to master STEM content. Using language to learn subject matter lies at the heart of CLIL (Content and Language Integrated Learning). Thus, the networking of STEM and CLIL can be turned into an explicit methodology, further enriched by task-based learning approaches (TBL) which teachers can employ so as to put students' interest, curiosity and sense of initiative at the centre of the learning process.

Objectives

To reach its purpose and aims, *s:fl* has developed a teaching methodology based on Action Research, involving task-based exploration of STEM subjects in combination with CLIL. This methodology is learner-centered and includes planning and implementation skills geared to the developmental level of the learners ("entrepreneurial pedagogy"). It does not intend to modify or fundamentally change the national STEM- and languagecurricula in the target countries, but rather to encourage their implementation in schools, by proposing and evaluating an innovative, bottom-up methodology that is engaging and motivating both for teachers and their students.

Outputs

One of the central outputs of *s:fl* is the Teacher Training Course (TTC) presented here. It brings together the fundamentals of the project approach, namely the methodologies of task-based (language) learning (TBL) and Content and Language Integrated Learning (CLIL), and interconnects these with subject matter generated from STEM-subjects based on STEM methodology developed specifically for *s:fl*. In this way, *s:fl* emphasizes the critical role that STEM subjects play in today's educational world. Since the project has been tested in primary schools (grades 5 and 6), where learning outcomes were measured and evaluated, the results of these evaluations now can be transported directly into a hands-on training course for student-teachers and in-service teachers. In this respect, the TTC addresses the needs expressed by the European Council that "Teacher education programs should be of high quality, evidence-based and relevant to [learners'] needs." (Council Conclusions, 2009/C 302/04).

In compliance with these demands, the TTC integrates the two other central outputs of the project, namely

(a) the series of "plug-and-play" STEM-CLIL teaching modules, applied to a variety of STEM subjects and applicable to any foreign language; and

(b) a virtual student learning portfolio which documents each student's learning outcomes.

Both of these as well as other materials can be accessed as a supplement to this training course handbook in the annexes available online in the *s:fl* **TTC Repository**.

The *s:fl* project was piloted in schools in each of these four countries: Bulgaria, Greece, Poland and Romania. The lessons were taught in either German or Spanish. Annex 3 provides samples of good practice meant to serve as tools for teachers encouraging them to try out this approach in their own teaching.

However, the training provided here is not limited to the languages of German and Spanish. Securely anchored in the CLIL approach, any foreign or second language can serve to implement the *s:fl*-goals in different STEM subjects and related areas in science such as biology or environmental studies. Also, the training course can be adapted to serve younger or older learners than those represented here, and thus enrich the curriculum in elementary and in secondary schools alike.

Added value (content and language)

The effectiveness of this approach has been comprehensively evaluated in the *s:fl*- project, revealing

(1) that students learning with this method reach knowledge and competence levels comparable to those students learning STEM conventionally in monolingual settings, and

(2) that students generate a high level of interest in STEM subject matter and in learning STEM through the lens of another language than their mother tongue.

Similarly, teachers have expressed

(1) a higher sense of fulfillment and satisfaction from teaching STEM using the CLIL approach, and

(2) an appreciation of the added value of STEM-teaching in their professional profile.

Trainees' profile

The teacher-training course addresses the needs of practitioners wishing to expand their professional portfolio by adding new methodological dimensions to their teaching of STEM subject matter. It also addresses the interests of teacher trainees or novices wishing to become STEM and/or CLIL teachers. The TTC handbook applies the term *trainee* to all these participants.

Trainers' profile

Geared explicitly to the training aspect, the teacher training course provides guidelines for teacher training institutes and their trainers. Therefore, in order to fulfill its purpose, it is considered as a prerequisite that trainers have experience in either STEM or CLIL or both, and that they have a command of the language in which STEM subjects are to be taught. The TTC handbook applies the term **trainer** to all teaching professionals involved in the implementation of the training.

TTC: Structure, Format

TTC Structure

The TTC is composed of 5 modules (= components to be taught). In addition, TTC provides 3 annexes containing materials for teachers to use as required (= supplementary components). The course is designed to fit into a 5-day program comprising 7-8 hours each day, thus fitting itself into a one-week training period. However, the modular structure of the TTC permits a segmentation of the program, for instance into 2 or 3 segments to be conducted in 2 or 3 weekend sessions. Furthermore, each module can be taught as a stand-alone element. If, in case of time constraints, the training needs to begin in the afternoon, the Day 1 program can be adjusted by condensing the morning and afternoon sessions into a single unit of a minimum of 5 hours. In case the final day program needs to terminate at noon, the afternoon program can be incorporated into the morning session.

This overall flexibility allows trainers to set preferences and accommodate the program to a pre-defined time-frame and other local constraints. However, to ensure optimal information processing and learning results, trainers are advised to follow the time frame and the module sequence suggested. The annexes are not required elements of the training course as such; they serve as toolboxes and collections of materials to be used where necessary or so desired.

The 5 modules comprise these methodologies and areas of implementation:

- 1. Task-based learning (TBL): method and application
- 2. Content and Language Integrated Learning (CLIL): method and application
- 3. STEM through CLIL and with "mobile labs": guidelines, method, application
- 4. Lesson planning and execution: guidelines, checklists, templates
- 5. Observing and assessing teaching (planning, processes and outcomes)

The annexes, located in the s:fl TTC Repository, contain materials on:

Annex 1: STEM-CLIL – Documents Annex 3: STEM-CLIL – Powerpoint presentations Annex 4: STEM-CLIL- Worksheets

Each module contains a description of the course procedure, its content areas, objectives, and expected outcomes. Where applicable, it provides activities for the trainees to gain hands-on experience. Furthermore, the plug-and-play mode of the TTC course offers links to additional resources and materials; these are either internal, i.e. direct outcomes of the *s:fl* project, such as lesson modules and samples of good practice, or external, such as web-based resources, suggestions for further reading, and more.

In the program structure of each module, the following categories and time-frames are used:

Day/Time:	morning sessions – approximately 4 hours afternoon sessions – approximately 3-4 hours
Topic:	specification of the module and the content areas to be covered. "Review & Reflect" is the closing slot of each workday; participants use this slot to provide feedback, and re-formulate their expectations portfolio prepared at the beginning of the workshop.

.

In addition, and when deemed necessary, this slot may also be used for individual trainer-trainee consultations.

- Materials: materials suggested for use during the training itself; can be supplemented or substituted by other materials (trainer's choice).
 Note: materials provided are mostly in English, some also in German, or Spanish. Power Point Presentations (PPP) provided are mostly in English, some in German. All materials have been tested in *s:fl* training contexts. They are provided in the *s:fl* TTC Repository.
- Mode: defines the interactional approach(es) predominant in the session; can be supplemented or substituted by other approaches (trainer's choice).

TTC Format

Each module is presented below in the following format:

- 1. Module overview (sessions: morning afternoon)
- 2. Module objectives
- 3. Description of the module's general content and individual topics covered, including mode of presentation where necessary.
- 4. TTC-specific materials and resources provided online in the s:fl TTC Repository
- 5. Additional resources, supplementary readings

Module	Day / Time	Торіс
	Day 1	Introduction / Meet & Greet
	morning	Pre-framing:
		personal expectations portfolio: personal teaching philosophy
		Course overview
3L 1:	Day 1	TRL: Task-based learning 1:
≥⊢	afternoon	the fundamentals (developmental psychology)
	arternoon	TBL: Task-based learning 2:
		the methodology
		Poviow & Poflact
	Day 2	CLU Dringiples, Content and Language Integrated Learning
	Day 2	CLIL-Principies: Content and Language Integrated Learning
	morning	Club Demainer The A Demainer (4 Ce):
		CLIL-Domains: The 4 Domains (4 Cs):
		C1: Content – C2: Communication
1 2: 1 1:		C3: Cognition – C4: Culture (Community)
20		
	Day 2	FOCUS C2: BICS & CALP
	atternoon	Focus C3: LOTS & HOTS
		From CLIL to STEM: the rationale
		Review & Reflect
	Day 3	The TBL-CLIL-STEM Paradigm
_	morning	The CLIL-STEM Repertoire 2: Lesson Plan Analysis
E 33		
STS	Day 3	STEM-Focus1: the experimental phase
	afternoon	STEM-Focus 2: implementing the mobile lab
		Review & Reflect
20	Day 4	Planning an integrated STEM lesson 1:
nin	morning	Closing in on a topic
anı		Planning an integrated STEM lesson 2:
۲ م ۲ م		Using the STEM lesson planning template
Les	Day 4	Lesson plan presentations and peer-feedback
	afternoon	Review & Reflect
	Day 5	Self-assessment and Peer-assessment:
	morning	Principles and Guidelines
		Self-assessment:
ent		The CLIL-STEM teacher's competences grid
Sĩ Sĩ		STEM-CLIL (Peer) Observation
Z Ses		
As	Day 5	Surveying the <i>s:fl</i> –TTC Repository: the annexes
	afternoon	Summary: My next steps in STEM-CLIL
		Trainees' Feedback & Networking
		Conclusion

s:fl Teacher Training Course – Overview 5 Modules

Module M1: Task-Based Learning (TBL) Overview Morning session: Pre-framing Afternoon session: TBL

	Session	Торіс	Materials	Mode
	Morning	Introduction /		Trainer /Organizer
		Meet & Greet		presentation
		Pre-framing:	Handouts:	Brainstorming; Group
		personal expectations profile;	"Personal	Discussion;
		personal teaching philosophy	Expectations"	Team building;
			"Teaching	Plenary
			Philosophy"	
		Course overview	Handouts	Trainer presentation
TBL			(trainer)	Plenary
	Afternoon	Task-based learning 1:	PPP1	Presentation
		the fundamentals (learner)	Worksheet 1	Activity
		Task-based learning 2:	PPP1	Presentation
		the methodology (teacher)	Worksheet 2	Activity
		TBL Principles in action:	Worksheet 3	Activity
		planning a TBL activity		
		Review & Reflect		Plenary
				Discussion

Module objectives

- 1. Trainees will gain insight into their personal involvement motivation by reflecting on their expectations from the TTC in conjunction with their personal teaching philosophy.
- 2. Trainees will gain insight into the principles of TBL as an interconnected concept of learner-centred instruction.
- 3. Trainees will test their awareness of TBL by analyzing learner profiles.
- 4. Trainees will test the applicability of TBL by planning a task-based learning scenario.

Session overview – morning

Pre-Framing. Framing is a technique that helps the meaning-making process in learning situations. To meet the demands of TTC purposes, it consists of two interrelated parts. **Personal expectations profile**: This *pre-framing* activity at the outset of the workshop allows participants to locate themselves in the center of the training situation by defining their expectations and hoped-for outcomes of the training course, both in terms of their personal involvement and in terms of the course content. The exchange of personal expectations with the other trainees allows trainers to review their focus on upcoming workshop activities. It also allows trainees to review their initial expectations as the training progresses from day to day.

Personal teaching philosophy: This *pre-framing* activity challenges the trainees to reflect on their professional self-perception. Teachers, novices in the profession as much as experienced professionals, harbor beliefs about "what works" in the classroom and what not. In a game-like activity participants can be asked to align their personal teaching "philosophy" to a range of pre-defined teacher profiles, and explain their choice(s). Lewis (1993: 30) offers these categories for language teachers:

instructor	editor	language partner
educator	counselor	cheerful steamroller
motivator	confessor	instant reference book
dictator	fount of all truth	sympathetic interlocutor
assessor	social organizer	representative of authority
time keeper	genial host	language advisor

(Source: Bach 2013: 317)

Session overview – afternoon

TBL fundamentals and methodology

Task-based language learning (TBL) focuses on the use of authentic language in authentic learning contexts. Students are involved in meaningful tasks using the target language. Such tasks can include real-life activities in the classroom or simulation activities (preparing for an interview, or making a phone call). The outcome of the learning activity is assessed equally on the task process and the task results, both relying on communicative processes involved in getting the task completed. Language accuracy is deemed important but has no effect on the outcome assessment, as long as the flow of information is not endangered (principle of "message before accuracy"). The learner is positioned in the center of the task activity, not the subject matter or the teacher. This is where the teacher redefines his function as a planner, provider, and monitor of the learning activity. Tasks developed for TBL are reflective of the learners' cognitive age and their language competence levels. TBL focuses on assisting students to develop target language fluency and confidence in using the language in concrete situations. The core of the lesson or project is, as the name suggests, the task.

Task-based learning is:

- 1. experiential, contextual and authentic (learning activities)
- 2. interactive and autonomous (communicative processes)
- 3. learner and learning oriented (task processing)
- 4. product oriented (results of classroom based learning activities)
- 5. emancipatory (development of social competences)
- 6. *holistic* (the learner's personality and individuality)

Source: Bach/Timm (2013): 17-18 – see PPP1

Why do we focus on TBL in the *s:fl*-project? In terms of method (approach), TBL overlaps with STEM; both follow an identical procedure in which the task (TBL) or experiment (STEM) forms the central activity of a given lesson. The major difference is: While in TBL the task is an activity mostly planned and generated by the learners themselves, in STEM the experiment follows a pre-defined 5-step routine (STEM inquiry method – see M3). Both approaches locate the learner at the center of the process, with the teacher acting as learning facilitator and moderator of the learning process.

TBL	STEM
Pre-Task Activities	Trigger
	Hypothesis
Task Cycle 1:	Experiment:
Planning & Execution	Planning & Execution
Task Cycle 2:	Verification & Conclusion:
Review & Report	Review & Report
Transfer	Generalization / Transfer

Note to trainers: It is important to clarify in this TTC session that tasks are more than simple activities learners are encouraged to engage in. Since STEM tasks (experiments) are highly outcome-oriented, teachers need to make sure that the activities they plan to involve their students in are as task-like as possible. According to Dave & Jane Willis (*Doing Task-based Teaching.* OUP. 2007:12-14) the following criteria describe task-characteristics applicable to the experimentation phase in STEM:

- 1. Will the activity engage learners' interest?
- 2. Is there a primary focus on meaning?
- 3. Is there a goal or an outcome?
- 4. Is success judged in terms of outcome?
- 5. Is completion a priority?
- 6. Does the activity relate to real world activities?

Source: https://www.teachingenglish.org.uk/article/criteria-identifying-tasks-tbl

The more confidently the teacher can answer "yes" to each of these questions, the more task-like the activity. Teachers are encouraged to use these six questions as a reference tool in their planning (see M4). To test their understanding of these principles, trainees will be asked to prepare and present a task-based learning scenario.

TTC-specific materials, activities, and resources provided in the *s:fl* TTC Repository

Materials

PPP1, Handouts, Worksheets 1, 2, and 3

Activities

- 1. Trainees analyze and categorize "Learner profile 'Lisa'" / Worksheet 1
- 2. Trainees analyze and categorize "Learner profile 'Richard'" / Worksheet 2
- 3. Trainees plan a task-based scenario / Worksheet 3

Resources

https://www.teachingenglish.org.uk/article/criteria-identifying-tasks-tbl

Willis, Dave & Jane. *Doing Task-based Teaching*. OUP. 2007.

Bach, Gerhard & Johannes-Peter Timm (eds.) *Englischunterricht: Grundlagen und Methoden einer handlungsorientierten Unterrichtspraxis* [*Task-based Teaching Methodology*]. 5th rev. edition. Tübingen: Francke. 2013

Module M2: Content and Language Integrated Learning (CLIL) Overview Morning session: CLIL: Principles & Domains (4Cs) Afternoon session: Focus on C2 & C3

	Session	Торіс	Materials	Mode
	Morning	CLIL: Content and Language Integrated Learning Definitions – Objectives – Implementation	PPP2	Presentation Activity
		CLIL: The 4 Cs	РРРЗ	Presentation
		Content – Communication –	Worksheet 4	Activity
		Cognition – Culture		
		Focus C1: Content		
	Afternoon	Focus C2: BICS & CALP	PPP4	Presentation
			Worksheet 5	Activity
		Focus C3: LOTS & HOTS	PPP5	Presentation
			Worksheet 6	Activity
		From CLIL to STEM: the	Worksheet 7	Activity
		rationale	(STEM lesson)	
		Review & Reflect		Plenary
				Discussion

Module objectives

- 1. Trainees will gain insight into what CLIL is and how it is distinct from other related methodologies or pedagogies.
- 2. Trainees will gain insight into the complexity of CLIL, namely the interrelation of the 4 CLIL domains ("4Cs") and how this relates to their teaching.
- 3. Trainees will gain insight into the communication concept of BICS and CALP and be able to apply these in a given task.
- 4. Trainees will gain insight into the cognition concept of LOTS and HOTS and be able to apply these in a given task.
- 5. Trainees will be able to apply C2- (communication) and C3- (cognition) concepts in an analysis of a STEM lesson.

Session overview – morning

CLIL Pedagogy

CLIL is a pedagogical approach for learning content matter through an additional language; both the subject matter and the language are focused on in this approach. Developed in the 1990s, CLIL has gained importance and impact in schools worldwide, and the European Commission prioritizes CLIL as the major pedagogical approach in the 21st century: "It can provide effective opportunities for pupils to use their new language skills now, rather than learn them now for use later. ... It provides exposure to the language without requiring extra time in the curriculum, which can be of particular interest in vocational settings."

Very briefly defined, CLIL is "a dual-focused educational approach in which an additional language is used for the learning and teaching of content and language with the objective of promoting both content and language mastery to pre-defined levels" (Frigols-Martín et al. 2011). – While this defines "what" CLIL is, a broader definition is needed to show "how" CLIL is made operational as a teaching method: "CLIL is an instructional concept in which specific subject-matter, such as Art, Music, Physics, History, or Physical Education, is taught in a language different from the mother tongue. Language and content are learned in an integrative manner. In working with authentic learning materials, the learners expand their language competence and, at the same time, gain a deeper understanding of the subject matter in question. The added value resulting from this dual approach can be found in different areas inside and outside of the school environment. In addition, content and language integrated learning in real-life and context-specific situations promotes the development of intercultural competence." (Bach 2013) – It is also important to clarify what CLIL is not. It is not "immersion pedagogy", not "bilingual education", not "content-based instruction" (check online resources for definitions of these approaches.).

The dual focus of CLIL has been promoted by the European Commission as providing "added value" for learners, schools, and communities at large. The major added-valueelements highlighted are: CLIL ...

- 1. builds intercultural knowledge and understanding as well as intercultural communication skills
- 2. develops multilingual interests and attitudes
- 3. provides opportunities to study content through different perspectives
- 4. allows learners more contact with the target language
- 5. does not require extra teaching hours
- 6. complements other subjects rather than competes with them
- 7. diversifies methods and forms of classroom practice
- 8. increases learners' motivation and confidence in both the language and the subject being taught

(Source: http://ec.europa.eu/education/languages/language-teaching/doc236 en.htm)

The CLIL Framework – the 4 Cs (Do Coyle)

The basic principle of CLIL – language is used to learn subject matter which in turn determines the language needed to communicate in such a context – provides the framework for subsequent methodological decisions. Following Do Coyle, these are the **4 domains of CLIL**:

- 1. Content (C1): progression in knowledge, skills and understanding related to specific elements of a defined curriculum
- 2. Communication (C2): using language to learn whilst learning to use language
- 3. Cognition (C3): developing thinking skills which connect concept formation to understanding and language
- 4. Culture (C4): exposure to alternative perspectives and shared understandings, which deepen awareness of others and self.

Source: Coyle, D. (2008). CLIL – a pedagogical approach. In N. Van Deusen-Scholl, & N. Hornberger, *Encyclopedia of Language and Education, 2nd edition* (pp. 97-111). Springer. See: <u>https://clilingmesoftly.wordpress.com/clil-models-3/the-4-cs-model-docoyle/</u>

This indicates that, in several ways, a CLIL-based lesson overlaps with the principles of a TBL-based lesson. Both integrate identical skills, focus on real-life tasks, and use materials directly related to a content-based school subject. Furthermore, with respect to language as communication, both focus on language *processing* and on language *production* at the same time. And with respect to cognitive processing, both CLIL and TBL focus on the thinking processes of learners and how teachers assist learners in expressing their thoughts appropriately. At the methodological level of CLIL planning, this involves a clear understanding of BICS & CALP and LOTS & HOTS.

Session overview – afternoon

BICS & CALP and LOTS & HOTS

The concepts hidden behind these acronyms describe basic components of CLIL in two domains: BICS & CALP = C2-domain "communication"; LOTS & HOTS = C3-domain "cognition". The 2015 *TKT-CLIL-Glossary* (see "Resources" below) describes these as follows.

BICS: Basic Interpersonal Communicative Skills

Those skills needed for everyday conversational talk. Examples are: greetings, stating likes and dislikes, describing the weather. ... Tasks associated with BICS are usually less demanding. Cognitive processes linked to BICS include: identifying specific information, naming objects, matching and sorting objects into sets.

CALP: Cognitive Academic Language Proficiency

This is the language competence required for studying curricular subjects in a non-native language. CALP refers to the language of academic learning. The language learned is cognitively demanding and often impersonal, e.g. listening to lectures on abstract topics, writing essays. ... Cognitive processes linked to CALP include: justifying opinions, forming hypotheses and evaluating evidence.

LOTS: Lower order Thinking Skills

Skills such as remembering, understanding and applying new subject knowledge. Learners develop LOTS for example when they recognize new vocabulary, classify, give examples and compare objects. Lower-order thinking can involve the use of basic or advanced vocabulary

HOTS: Higher Order Thinking Skills

Skills such as analyzing, evaluating and creative thinking. These develop reasoning skills, critical judgment and producing new ideas, e.g. How can we change the design of the building to make it more energy efficient? Higher-order thinking involves the use of advanced language.

Both, BICS/CALP as well as LOTS/HOTS, are attempts to classify languaging processes and thinking processes in a hierarchical fashion, on scales ranking from lower order skills to higher order skills. They serve as orientation guidelines and are meant to be used by CLIL teachers as aids in the planning phase of lesson building. It takes practice to use these as tools, and not as prescriptions. It is important to stress that they are dynamic in nature, and that overlaps from one level or stage to the next (higher or lower) must be considered normal. When these scales are used carefully as tools, they not only assist teachers in planning CLIL lessons, but also in assessing and evaluating lesson outcomes in terms of learner competences.

TTC-specific materials, activities, and resources provided in the s:fl TTC Repository

Materials

PPP2, PPP3, PPP4, PPP5 Worksheets 4, 5, 6, 7

Activities

- 1. Trainees compare the narrow and broad definition of CLIL by identifying the major components in each / Worksheet 4
- 2. Trainees check online definitions for "immersion pedagogy", "bilingual education", "content-based instruction", and determine their difference from CLIL.
- 3. Trainees discuss the validity of the "added value" of CLIL with respect to their personal educational settings.
- 4. Trainees analyze learner tasks using BICS/CALP reference tools. / Worksheet 5
- 5. Trainees develop learner tasks using LOTS/HOTS reference tools. / Worksheet 6
- 6. Trainees analyze a STEM lesson plan based on C2 and C3 domain characteristics. (German sample: "Schmetterling") / Worksheet 7

Resources

Frigols Martín, Marsh, Mehisto, Wolff. *European Framework for CLIL Teacher Education*. <u>http://www.ecml.at/tabid/277/PublicationID/62/Default.aspx</u> (available in English, German, French, Serbian)

Bentley, Kay (2010). The TKT Course CLIL Module. Cambridge: CUP.

(Bentley, Kay) (2015: tkt-clil-glossary. (pdf-document provided online): <u>http://www.onestopenglish.com/clil/</u>

https://www.teachingenglish.org.uk/article/clil-a-lesson-framework

Module M3: STEM Overview Morning session: Afternoon session:

TBL-CLIL-STEM Paradigm & Repertoire STEM-Focus Experiment & Mobile Lab

	Session	Торіс	Materials	Mode
	Morning	The TBL-CLIL-STEM Paradigm	Handout	Trainer Presentation
				Team-work (design)
		The TBL-CLIL-STEM	Handout	Trainer Presentation
		Repertoire:		Individual & Team
M3: STEM		Lesson Plan Analysis		Work (Analysis)
	Afternoon	STEM-Focus 1:	Worksheet 8	Trainer Presentation
		the experimental phase		Team Work
		STEM-Focus 2:		Trainer Presentation
		implementing the mobile lab		Team Work
		Review & Reflect		Plenary
				Discussion

Module objectives

- 1. Trainees will gain insight into what STEM in the *s:fl* project is and how it is distinct from other STEM concepts and methodologies.
- 2. Trainees will gain insight into the complexity of the inter-relationship between TBL, CLIL and STEM, and be able to show this complexity (construction of a model) and describe it (preparation of a chart / diagram).
- 3. Trainees will be familiarized with the 5-step"methodology by inquiry" (trigger, hypothesis, experimentation, conclusion, generalization).
- 4. Trainees will be able to apply the 5-step *s:fl* CLIL-STEM cycle in a given task (lesson model analysis or similar).
- 5. Trainees will be able to analyze a CLIL-STEM lesson plan for its STEM Potential.

Session overview – morning

The TBL-CLIL-STEM Paradigm

STEM is a curriculum based in four specific disciplines — science, technology, engineering and mathematics (German: MINT – Mathematik, Informatik, Naturwissenschaften, Technik); (Spanish: ciencia, tecnología, ingeniería, matemáticas). STEM considers these disciplines as interconnected, not as separate school subjects. Therefore, its approach is interdisciplinary and applied. STEM integrates the four subject matter areas into a cohesive unit, where learning can take place in the environment of real-world applications. Context-embedded and task-based learning activities, real world applications, and problem solving are the signature of STEM. These features already signify the close connectivity to the principles of CLIL.

What makes STEM special in the **CLIL** context is its primary objective: to allow learners to realize how scientific methods can be applied to everyday life. In this respect, STEM is not "reserved" for older learners. Combined with CLIL, STEM activities begin in the elementary school sector, showcasing the possibilities of "cross-over" effects of scientific explorations on real life questions. The objective is a double one: to generate students'

interest in exploring a scientific question, and to enable them to communicate their findings in a language other than their L1.

In this way, what is activated in the protected context of school, can successfully be transferred beyond school boundaries. This is where STEM and CLIL connect to TBL: bridging in-school STEM activities and out-of-school STEM applications (for more detail consult <u>http://www.livescience.com/43296-what-is-stem-education.html</u>).

STEM fields are closely related and build on each other. At the primary level, the learners' curiosity about natural and scientific phenomena in the world around them can be channeled into appropriate STEM-focused curricular designs (see worksheet 7 from previous session). Such learning in the communicative and cognitive domain – C2 and C3 of the 4 CLIL-domains) – build stepping stones for STEM-activities in the higher grades of elementary education (*s:fl* = grades 5 and 6), since the students will be familiar with some of the basic approaches of exploratory learning and experimental designs based on the inquiry method.

The demand on teachers should not be underestimated. Teachers working within the TBL-CLIL-STEM network, do not apply the "infusion"-approach; they do not provide students with the "right" answers. Instead, they help them to research and identify the right questions and find appropriate answers themselves. Creativity and risk-taking are encouraged, and errors and mistakes – in the execution of experiments (= content) as much as in the communicative attempts to describe the processes involved in experimenting (= language) – are valued as learning opportunities.

The TBL-CLIL-STEM Repertoire

Generally, the STEM repertoire is defined in this way (for details consult <u>http://www.edweek.org/tm/articles/2014/06/17/ctq_jolly_stem.html</u>):

Science	= the study of the natural world
Technology	= any product made by humans to meet a want or need
Engineering	= the design process students use to solve problems
Mathematics	 the language of numbers, shapes, and quantities

As a teaching approach founded on TBL and CLIL, STEM incorporates six features:

- 1. STEM focuses on real-world issues and problems. Students explore real social, economic, and environmental problems and develop solutions
- 2. STEM clearly defines the task students will engage in, as well as its range, and its limitations.
- 3. STEM is built around the "exploratory design cycle". This includes identifying a problem, conducting background research, developing ideas for solutions, creating or testing a prototype, verifying the results, and transferring them to new contexts. (see illustration below)
- 4. STEM immerses students in hands-on inquiry and open-ended exploration. Students collaborate in each phase of the task and its solution(s). In this process, students communicate with fellow students and with the teacher in the L2.
- 5. STEM involves students in teamwork. Teamwork is process-oriented as well as product-oriented and incorporates the L2 in a natural fashion. Student-teams decide on how to communicate their findings.

 STEM is interdisciplinary; it applies the same exploratory design process across the different subject matter areas and forces students to think "outside of the box." STEM allows for multiple right answers and views failure as a necessary part of learning. (Source: Anne Jolly 2017)

The transformation of these features or principles into a well designed CLIL-STEM teaching model needs careful planning. Traditionally, STEM in L1 learning contexts builds on the 7-step method called the "exploratory design cycle" developed in the United States in the 1990s. STEM in Europe has comprised these 7 steps into a 5-step-method without giving up on the complexity of the approach. This scientific/educational "methodology by inquiry" is a pedagogical approach based on historically established scientific research methods. The inquiry method has contributed significantly to the recognition and success of science and technology in educational environments. What appears to be top-heavy in the original design, with four steps to complete before experimentation begins, is more balanced in the 5-step model, with a clear focus on experimentation in the middle of the cycle. The advantages of the 5-step cycle for teachers and students are: comprehensiveness and clear framing of individual steps,

Following the approach of the 5-step s:fl CLIL-STEM cycle, the teacher

- seeks triggers to attract the attention of students
- urges students to formulate hypotheses
- urges and helps students to conduct experiments and to record their observations
- causes discussion of the observations and helps students form conclusions
- ensures the consolidation leading students gradually to generalization, transfer and application of knowledge to the phenomena of everyday life

The 5 steps in detail (based on Kalkanis 2010)

1. Trigger of Interest ("I observe", "I am interested in"): used to challenge the student's interest. Triggers can refer to topical or unusual natural phenomena of our local or wider world, to scientific predictions, presentations of new technological applications and products, to current events, or to artistic creations. Apart from our natural environment, another source for research and for the selection of different types of information (texts, images, audio) that may trigger the educational process is the internet.

2. Hypothesis Formulation ("I assume", "I discuss", "I hypothesize"): reflections on the topical issue, as has emerged from the trigger of interest and discussion leading to hypotheses; causes, principles and the parameters that affect it or are affected by it, are involved here. Any existing information on the subject and questions generated by such information should be recorded; it can lead the discussion to a hypothesis focusing on the phenomena and requiring further study.

3. Experimentation ("I research", "I experiment", "I investigate"): the formulation of questions and hypotheses highlights the necessity of further research; its complexity may make it necessary to divide the students into groups, each concentrating on a different aspect. The *coordination of groups* during experimentation, the *schedule compliance* and the *information feedback* are essential components of a successful cooperative effort.

4. Theory Formation / Conclusion ("I conclude"): conclusions are formulated based on the processing, evaluation, selection and composition of the material collected, the experimental observations, the measurements taken and the data collected.

5. Generalization / Application / Transfer ("I consolidate", "I generalize"): conclusions are transferred to applications in other similar processes and phenomena of our physical world. These can be correlated with other observations / events / conclusions to supply further proof of the validity of the theory.

Session overview – afternoon

STEM-Focus 1: the experimentation phase and its larger context

In the 5-step *s:fl* CLIL-STEM cycle the experimentation phase demands central attention. It builds on hypotheses generated by the students and feeds into the verification of the hypotheses and into conclusions concerning the validity of the experiment in different new scenarios.

How do we know a CLIL-STEM lesson is what it claims to be and not simply another science experiment taught in a different language? How can we assess the quality of STEM lesson plans available on the internet? Can they be easily adapted to our specific learning environment and the demands of the TBL-CLIL-STEM paradigm?

The first guideline to use in assessing the experimentation potential in STEM lessons or lesson plans for task-based learning scenarios in a CLIL environment are the six features listed in the TBL-CLIL-STEM Repertoire above. The second is the inventory of 10 observation items provided below. The questions to keep in mind when designing or reviewing a STEM lesson (plan) and the experiment involved in the lesson are:

- 1. Does the task / experiment present a real and compelling task challenge?
- 2. How will students relate to the task?
- 3. Does it allow for multiple acceptable and creative solutions?
- 4. Does it integrate important STEM content in an age-appropriate manner?
- 5. Is the design cycle used as an approach to solve the task?
- 6. Does the approach reflect a student-centered, hands-on teaching and learning experience?
- 7. Do the results lead to the design and creation of a technique, technology, or prototype?
- 8. Does it engage students in purposeful teamwork?
- 9. Is there a clear focus on problem solving (testing a hypothesis, its solution, and the evaluation of its results)?
- 10. How does it involve students in communicating their design, experiment, and results in oral and written form, appropriate to their L2 competence level?

(Source: Anne Jolly. Adapted for *s:fl* from: <u>http://www.stem-by-design.com/how-to-analyze-a-lesson-for-stem-potential/</u>)</u>

Reviewing available STEM lesson plans is the first step towards successful lesson planning in the teacher's own STEM discipline. In particular, language teachers preparing to teach STEM subject matter are advised to practice planning an experiment-based STEM lesson in a "dry run" and submit their plans to qualified peers for assessment. The second step is the implementation of the mobile lab as a major tool in the execution of an experiment.

STEM-Focus 2: implementing the mobile lab

Obviously, STEM teaching does not require mobile labs. Nevertheless, they are a great asset in planning and conducting lessons due to their economy and ease of integration. Mobile labs enable students to develop and implement their own experiments. The methodology is student-led, self-directed and includes project planning and implementation skills: all essential to the development of transversal skills. Mobile labs are modular and can be shared among schools. They allow teachers to provide their students with:

- 1. hands-on activities to engage students in meaningful lab activities
- 2. access to innovative equipment and technology
- 3. safe learning and experimentation environments
- 4. learning activities covering a variety of STEM topics

Note to trainers: The use of mobile labs in the teaching of STEM topics has been an integral part of the *s:fl*-project. To what extent mobile labs will be utilized in other contexts depends on decisions made at the local or regional level and in the schools implementing STEM. Where it is clear that mobile labs will not be utilized, this session can be eliminated from the TTC program. Instead, the previous session on "The CLIL-STEM Repertoire" and "STEM-focus 1" can then be expanded.

TTC-specific materials, activities, and resources provided in the s:fl TTC Repository

Materials

Worksheets 8, 9

Document: CLIL-STEM lesson plan: Polygons and Polyhedra

Activities

- 1. Trainees construct a two- or three-dimensional model displaying the complexity of the TBL-CLIL-STEM relationship.
- 2. Trainees present their model in 5-minute oral presentations.
- 3. Trainees apply the 5-step *s:fl* CLIL-STEM cycle in a given task (lesson model analysis or similar) / Handout / Worksheet 8.
- 4. Trainees analyze a CLIL-STEM lesson plan for its STEM Potential, using Anne Jolly's checklist on features and questions / Worksheet 9.

Resources

Anne Jolly (2017). *STEM by Design*. Routledge. See also: <u>http://www.stem-by-design.com/how-to-analyze-a-lesson-for-stem-potential/</u>

Anne Jolly (2012). 12 Steps to Great STEM Lessons. http://www.middleweb.com/4328/12-steps-to-great-stem-lessons/

STEM Activities

Handbook. <u>http://www2.ivcc.edu/mimic/nsf/Middle%20School%20Activities/STEM%20A</u> <u>ctivities%20Handbook.pdf</u>

European Commission, (2007), Directorate-General for Research, Directorate L - Science, Economy and Society Unit L4 - Scientific Culture and Gender, "Science Education NOW: A Renewed Pedagogy for the Future of Europe", <u>http://ec.europa.eu/research/science-society/document_library/pdf_06/report-rocard-on-science-education_en.pdf</u>

Kalkanis G., (2010), "Scientific Educational Method by Inquiry". <u>http://micro-kosmos.uoa.gr</u> (\rightarrow educational proposals)

Module M4: Lesson PlanningOverviewMorning session:Planning an integrated STEM lessonAfternoon session:Lesson plan presentations and peer-feedback

	Session	Торіс	Materials	Mode
	Morning	Planning an Integrated STEM	Handouts	Presentations
		lesson 1:		Individual & Team
		Closing in on a topic		Work
a u g		Planning an Integrated STEM	Lesson planning	Presentations
inc		lesson 2:	template	Individual & Team
M4: Lesson Plar		Using the lesson planning	Assessment	Work
		template	checklist	
	Afternoon	Lesson plan presentations	Trainee lesson	Trainee
		and Peer-Feedback	plans	presentations
				Discussion
		Review & Reflect		Plenary
				Discussion

Module objectives

- 1. Trainees will gain insight into the sequential process of CLIL-STEM lesson planning
- 2. Trainees will be able to plan a STEM lesson using the STEM lesson planning template and other tools (Assessment Criteria Inventory)
- 3. Trainees will be able to gauge improvement potential in lesson plans through peer assessment processes

Session overview - morning:

Planning an integrated STEM lesson

Planning a STEM lesson is a cognitively demanding task even for experienced teaching professional. It means tying together all elements of TBL, CLIL, and STEM into a coherent design. It also implies testing it in a dry run by submitting it to peer assessment for constructive feedback. In many cases, STEM practices in individual schools are nourished by team work and peer support, since STEM teachers and language teachers work hand in hand. This added advantage can be fully utilized when teachers use appropriate tools for planning STEM lessons, for observing peers in implementing CLIL-STEM in their classes, and for assessing the outcomes of STEM learning activities. The tools necessary for each of these elements are provided in the *s:fl*-TTC Repository. In this session of the training course, they can be explored and experimented with. These tools are meant to be used flexibly: they provide strategies for planning, execution and assessment within specific CLIL-STEM boundaries. These boundaries, however, are not static; they have wide margins for modification and adaptation which should be utilized extensively.

Note to trainers: To provide greater flexibility in strategic planning, a large number of materials are provided below in the **Resources** section; they need to be adapted for local conditions. Among other constraints, this is due to the fact that most planning tools available (in printed form as well as online) are in English. Since CLIL and STEM are

quickly expanding "markets", trainers are advised to check the internet for new products, materials, and assets before implementing the training.

Planning an *integrated* STEM lesson implies using TBL and CLIL components in a strategic fashion. Teachers need to be clear about the context and the content of a lesson and the learning objectives towards which the 5 steps of a typical lesson need to be geared. Teachers need to be clear about content knowledge and the cognitive skills and the communicative skills needed to obtain such knowledge. Teachers need to be clear about how a lesson is orchestrated around the 5 steps design and how it is linked to previous and subsequent learning. And teachers need to be clear about how they can optimize their students' potential for independent task-based activities, and how to handle foreseeable as well as unforeseen difficulties including failure. It is important to remember that in TBL-CLIL-STEM *failure is a definite learning paradigm*. In STEM experiments, failure is to be considered normal; teachers can use it strategically as a motivator to incite further learning, particularly in the cognitive domain.

In the planning process, teachers can use as a general guideline the **Planning Inventory** provided in the *TKT Course CLIL Module* (Bentley 2010: 31) and expanded here to fit STEM concerns. There are 13 questions to consider:

- 1. What are my teaching aims? (= objectives)
- 2. What will learners know and be able to do at the end of the lesson which they didn't know or couldn't do before the lesson? (= outcomes)
- 3. What subject content will the learners revisit and what will be new?
- 4. What communication will take place? (BICS / CALP)
- 5. Which thinking and learning skills will be developed? (LOTS / HOTS)
- 6. Which tasks / experiments will learners be involved in?
- 7. What scaffolding is provided to make learning more effective?
- 8. Which classroom management activities are planned?
- 9. What language support will be needed for communication of content, thinking and learning? (4Cs dynamic model)
- 10. Which materials and resources will be provided to support the task / experiments?
- 11. Which generalization / transfer possibilities are made available?
- 12. How will learning processes and outcomes be assessed?
- 13. How will teaching processes and outcomes be assessed?

All of these questions (and more) have been integrated into the lesson plan and the assessment criteria available in the *s:fl* TTC Repository. Since the *s:fl*-project is clearly output-oriented as well as competence-oriented, the objectives specified in the lesson plan are competence-based. They are formulated as "can-do"-statements. "can-do"-statements are formulated in two areas – knowledge and skills: "The students will know …", "The students will be able to … ". Language-teachers having worked with the CEFR (Common European Framework of Reference for Languages: Learning, Teaching, Assessment) will be familiar with formulating "can-do"-statements. STEM teachers can easily adopt these to their field.

All lesson planning begins with content, namely defining a topic (C1 – the content domain in the 4Cs-model), according to the motto "First choose, then plan!". In most cases, topics are generated in accordance with national curricula required for implementation at the local level. Still, teachers may have a range of options. When

choosing content, questions 1 and 2 from the Planning Inventory need to considered side by side. Once this has been cleared, the questions concerning language and communication come into play (C2), alongside with questions concerning thinking skills (C3 – the cognitive domain). All of these need to be planned with appropriate scaffolding provided for the learners to activate their knowledge and skills, and to motivate their incentives for learning new content. Finally, questions concerning the generalization and transfer of newly acquired knowledge and skills need to be considered (C4 – the culture domain). This may not always be possible or necessary; but teachers should attend to this domain so as to make learning meaningful beyond immediate school contexts.

Session overview – afternoon:

Lesson plan presentations and peer-feedback

Lesson plans produced in a training session are far from perfect, they reflect the dynamics of work-in-progress. The downside to such results is that they cannot be put to the test in a classroom immediately. The upside is they can be presented to peers and trainers for review and feedback before they are implemented in the classroom. This provides a setting in which the exchange of ideas and suggestions bears great improvement potential. To allow all trainees to receive feedback on their own work as well as to provide feedback to other lesson plan proposals, this session is open-ended. Trainees should be encouraged throughout the feedback process to utilize the three inventories provided (see below), and to infuse their feedback with knowledge and insight gathered from the previous modules and sessions. This will build a bridge to the final Module on self-assessment and peer-assessment.

TTC-specific materials, activities, and resources provided in the s:fl TTC Repository

Materials

Worksheet 10: "13 Questions on Planning" Document: "Lesson planning template" Document: "Assessment Criteria Lesson Planning and Delivery"

Activities

- 1. Trainees will develop a STEM lesson plan integrating TBL, CLIL and STEM principles, using available templates and documents.
- 2. Trainees will present their lesson plans in front of a peer audience, and receive feedback on improvement potential.
- 3. Trainees will provide feedback on improvement potential to other lesson plan proposals.

Resources

Bentley, Kay (2010). The TKT Course CLIL Module. Cambridge: CUP.

Coyle, Do (2005). *CLIL Planing Tools for Teachers*. <u>http://www.unifg.it/sites/default/files/allegatiparagrafo/20-01-</u> 2014/coyle clil planningtool kit.pdf

Chapters on CLIL lesson planning can be found in these books:

Bell, Phil; Kelly, Keith; Clegg, John (2016): Putting CLIL into Practice. Oxford: OUP.

CLIL Guidebook (2016). (Sandra Attard Montalto, Lindsay Walter, Maria Theodorou, Kleoniki Chrysanthou). <u>http://www.languages.dk/clil4u/index.html#Guidebook</u>

Coyle, Do; Hood, Philip; Marsh, David (2010): CLIL. Cambridge: CUP.

Dale, Liz; Tanner, Rosie (2012). *CLIL Activities: a Resource for Subject and Language Teachers.* Cambridge: CUP.

Mehisto, Peeter; Frigols, Maria J.; Marsh, David (2008). *Uncovering CLIL: Content and Language Integrated Learning and Multilingual Education*. London: Macmillan.

A review outlining the contents of these books can be found here (available in German only): <u>https://www.goethe.de/de/spr/unt/kum/clg/20782495.html</u>

Module M5: Assessment Overview Morning session: Self-assess Afternoon session: the *s:fl* too

Self-assessment and Peer-assessment the *s:fl* toolbox: annexes; feedback

	Session	Торіс	Materials	Mode
	Morning	Teacher Self-assessment and	CLIL matrix	Trainer
		Peer-assessment:	PPP6	presentation
		Principles and Guidelines		self-guided
				instruction
		Self-assessment:	CLIL matrix	self-guided
		The CLIL-STEM Teacher's		instruction; peer
		Competences Grid		discussion
ent		(Peer) Observation	Observation	
M5: sessm		Guidelines & Inventory	Checklist	
As	Afternoon	Surveying the <i>s:fl</i> TTC	Annexes 1-4	Trainer
		Repository: the annexes		presentation
				discussion
		Summary:		Trainees' reflection
		My next steps in STEM-CLIL		and feedback
		Trainees' Feedback &		Trainees' feedback
		Networking		on TTC
		Conclusion		
	1			

Module objectives

- 1. Trainees will gain insight into their own CLIL-STEM competences by applying the CLIL matrix.
- 2. Trainees will be able to gauge improvement potential in lesson plans presented for review through peer assessment processes.
- 3. Trainees will be able to gauge improvement potential in their own lesson planning through self-assessment.
- 4. Trainees will gain insight into the advantages of supportive (peer) observation of CLIL-STEM classroom processes.

Session overview - morning:

Teacher Self-assessment and Peer-assessment: Principles and Guidelines

This training section addresses assessment as part of a teacher's professional profile. It does *not* deal with the assessment of *students'* competences. Since the assessment and/or evaluation of learning outcomes is largely governed by national or local provisions, it cannot be dealt with here. For those interested in *learner assessment*, the handbooks listed under "Resources" in Module 4 contain chapters on this matter. Particularly useful also is Bentley's chapter on students' learning outcomes assessment in the *TKT Course CLIL Module* (pp. 84-99).

Teachers have a strong impact on the performance of learners and thus on learning outcomes. Therefore, reflecting one's own practice is part and parcel of a teacher's

professionalism. Teachers are encouraged to review their practice and adjust it in the light of desired learning outcomes and of the individual needs of students. Where experiential learning, experimentation, and learning management are at the front of pedagogical practice, teachers make sure *not* to provide students with the answers, but help them to search for the right questions and find answers on their own initiative. To do this adequately, teachers need appropriate competences. To fine-tune their practice, teachers can resort to best-practice samples, assess their own samples of STEM practice with a critical view, and submit them to others experienced in providing constructive feedback. This is the nature of self-assessment and peer-assessment in general, and it applies in full range to CLIL-STEM practices as well.

Self-assessment: The final module of the TTC focuses on this issue and encourages trainees to self-assess their insight into the TBL-CLIL-STEM paradigm in general, and into the details of lesson planning in particular, in order to measure how their teaching skills and competences have been strengthened and developed by the TTC. A self-assessment matrix developed particularly for CLIL teaching professionals and CLIL trainees is provided to fill that demand. Developed by an international team of CLIL experts, the CLIL Matrix "is an awareness-raising and training tool for teachers who wish to consider the skills and knowledge necessary for achieving quality CLIL [and who wish] to examine the extent to which they are prepared for teaching through CLIL" (ECML homepage). The matrix is built around the 4 core elements of CLIL: Content, Language, Integration and Learning. These four elements are aligned with the 4 core elements of the "4 Cs": Culture, Communication, Cognition and Context. This alignment results in a matrix array of 16 indicators. To self-assess one's competence as a CLIL teacher, you follow the procedure outlined in the guidelines: "Each indicator is shown as a coloured box. Clicking on the box leads to four navigation elements. The first is an introduction to the quality indicator. The second provides an example of how the indicator is applied in the classroom. The third invites the user to answer a set of questions so that they can position themselves with respect to CLIL expertise. The fourth provides extra information in a brief text which is accessed by passing the cursor over the respective box answered." http://archive.ecml.at/mtp2/CLILmatrix/EN/qMain.html

Note to trainers: The matrix specifies "community" as one of the 4 Cs. This may be confusing since, in Module 2, "content" was specified as the first "C". Content, however, is already one element in the CLIL sector, and therefore cannot be used again in the 4Cs-sector. To solve this problem, the designers of the matrix use "community" instead. The *s:fl* designers consider "context" a better term to describe the components in this element. The functionality of the matrix as a self-assessment tool does not suffer from this change.

Peer assessment: When teachers invite colleagues into their classrooms to observe their teaching, they utilize a special "tool" to improve their practice – peer-assessment. For peer assessment, *s:fl* provides a checklist that has been used and tested by observers of CLIL practices. It is closely linked to the other components available to practitioners in the CLIL Inventory, namely the assessment criteria on lesson planning and lesson delivery (see Materials below). In fact, the observation checklist is the fourth component in the CLIL-STEM Inventory. It focuses on 4 observable areas:

- 1. Lesson structure, design, and outcomes
- 2. Teaching & Learning Strategies
- 3. Content, Language & Communication
- 4. Learning Processes Management / Mobile Labs

Peers concentrate on what they observe and comment only in this way: "observed; observed partly; not observed; no answer / does not apply". In other words, no judgment or evaluation is involved in the assessment. The list is flexible – items can be added, and comments on certain items can help to clarify observations. Even though the TTC does not involve any actual classroom teaching and observation, trainees can sharpen their perception and gain deeper insight into what defines sound CLIL-STEM practice.

Session overview - afternoon:

Surveying the s:fl Repository: the annexes

The annexes provide materials, resources and information on CLIL, STEM, and the *s:fl* project results and outcomes. Trainers will guide trainees through the materials. Particular attention should be paid to the lesson plans collected here, since they demonstrate samples of good practice. It is important to survey these beforehand, and pre-select those most suitable for the training at hand. They can be included in the presentation phases and trainee activities in individual modules, particularly M2, M3, and M4.

Note: Some annex materials may not be available to trainees, since these are restricted for use only by project partners. Special permission may have to be obtained.

Trainees' feedback

Trainers interested in trainees' feedback over and beyond the general review and feedback session at the end of Module 5, should consider developing a feedback document trainees can fill out and return to the TTC organizers. To ensure reliable results, feedback should be provided anonymously. A sample feedback checklist is available in the *s:fl* Repository. It has been tested in German TTC contexts. It can easily be adapted to Spanish or to the language (mother tongue) used in the training.

TTC-specific materials, activities, and resources provided in the s:fl TTC Repository

Materials

PPP6

Document: "Assessment Criteria Lesson Planning and Delivery" Document: "Observation Checklist" Documents: Lesson plans and Assessment Checklists from module 4 CLIL Competences matrix: <u>http://archive.ecml.at/mtp2/CLILmatrix/EN/qMain.html</u>

Note to trainers: check internet connection! Trainees need to bring notebooks.

Activities

- 1. Trainees will apply the CLIL matrix and discuss results with partners / peers.
- 2. Trainees will study the observation checklist / Worksheet 11 and discuss its potential for professional improvement with partners / peers.

Resources

Teacher self-assessment: ECML CLIL Matrix: <u>http://archive.ecml.at/mtp2/CLILmatrix/EN/qMain.html</u>

Student assessment:

Quartapelle, Franca (2012). Assessment and Evaluation in CLIL. (available in all s:fl project languages):

http://aeclil.altervista.org/Sito/en

alternatively:

http://aeclil.altervista.org/Sito/book-pdf-version-2/

Annex Materials: Overview

Annexe 1- Documents:

- A2 Arbeitsblatt CLIL Example / Beispiel "Schmetterling"
- TTC Assessment Criteria Checklist for CLIL-STEM Lessons Planning and Delivery
- TTC CLIL-STEM Lesson Planning Template
- TTC CLIL-STEM Observation Checklist
- TTC STEM lesson plan: Geometry Polygons and Polyhedra

Annexe 2 - Power Point Presentations:

- PPP1: Task-based (language) learning
- PPP2: CLIL Principles
- PPP3: CLIL 4Cs: Focus C1 Content
- PPP4: CLIL 4Cs: Focus C2 Communication
- PPP5: CLIL 4Cs: Focus C3 Cognition
- PPP6:CLIL Assessment

Annexe 3- Worksheets:

- TTC Worksheet 1: Learner profile "Lisa"
- TTC Worksheet 2: Learner profile "Richard
- TTC Worksheet 3: Designing a task-based scenario
- TTC Worksheet 4: Comparison brief and broad definitions of CLIL
- TTC Worksheet 5: BICS & CALP; LOTS & HOTS
- TTC Worksheet 6: LOTS & HOTS Activity
- TTC Worksheet 7: Analyzing a STEM lesson plan
- TTC Worksheet 8: CLIL-STEM methodology: the lesson design cycle
- TTC Worksheet 9: CLIL-STEM example: "Polygons and Polyhedra"
- TTC Worksheet 10: Planning a CLIL-STEM lesson
- TTC Worksheet 11: Analyzing the CLIL-STEM observation checklist

s:fl schools: future labs TEACHER TRAINING COURSE

HANDBOOK

"You can analyze the past, but you need to design the future. That is the difference between suffering the future and enjoying it."

Edward de Bono

Documents

Document 1: Arbeitsblatt A2 CLIL Beispiel: Modul: Umwandlugsprozesse in der Natur der Schmetterling

Document 2: Assessment criteria for CLIL- STEM lessons: planning

Document 3: CLIL- STEM Lesson planning template

Document 4: CLIL – STEM Observation checklist

Document 5: Geometry: Polygons and Polyhedra

MODUL: UMWANDLUNGSPROZESSE IN DER NATUR

DER SCHMETTERLING

Die Aktivitäten

Erste Sequenz: Entdecken des Entwicklungszyklus des Schmetterlings

Es ist zunächst erforderlich, das thematische Vokabular, das für jede Einheit und während der ganzen Sequenz gebraucht wird, einzuführen oder zu wiederholen.

Einführung: Einführung in die Sequenz anhand der Geschichte *Die kleine Raupe Nimmersatt* von Eric Carle (s. Bibliografie). Bevor die Geschichte vorgelesen wird, fragt der Lehrer die Schüler, was auf der Titelseite des Buches zu sehen ist. "*Mit der Raupe passiert etwas ganz Besonderes. Was denkst du/was denkt ihr, was passieren wird?"* Die Schüler sagen, was ihrer Ansicht nach mit der Raupe passieren wird.

**Dieser Teil der Sequenz kann zu einer Einführungseinheit zum Vokabular rund um die Umwandlung der Raupe erweitert werden. Vorlesen der Geschichte, gefolgt von Frage-Antwort-Gesprächen darüber, was mit der Raupe passiert ist, danach Vertiefung des Vokabulars mit Hilfe einer Aktivität/ eines Spiels.

Vertiefung: Diskussion über die Geschichte. Wie hat sich die Raupe zu einem Schmetterling entwickelt? Den Schülern die Möglichkeit geben, die Stadien, die sie beobachtet haben, zu beschreiben. Diese Entwicklungsstadien aufzählen und an der Tafel notieren. Verwenden von <u>Dokument 1</u> - Lebenszyklus, um zu erklären, dass die Raupe vier Entwicklungsstadien durchläuft, um ein Schmetterling zu werden.

Aktivitäten

 Die Lehrkraft teilt das Arbeitsblatt <u>Material 1</u> – Schmetterling1 aus und erklärt die Aufgabe. Sie fasst den Entwicklungszyklus des Schmetterlings zusammen, die Schüler nummerieren die Bilder und kleben anschließend die entsprechenden Wörter auf.

Der Schmetterling (das Weibchen) legt das Ei/die Eier auf einem Blatt ab. Die Raupe schlüpft aus dem Ei. Sie frisst sehr viel und wächst.

Dann wird aus der Raupe eine Puppe. In der Puppe entwickelt sich der Schmetterling.

Der Schmetterling schlüpft aus der Puppe. Er trocknet seine Flügel und fliegt fort. Die Schüler sollen anhand der Zeichnung verstehen, dass es sich um einen Zyklus handelt, der sich wiederholt. Zur Wiederholung kann später das <u>Material 2</u> von den Schülern bearbeitet werden.

- <u>Material 3</u> Lückentext (abhängig vom Schülerniveau). Es können nun auch die Fotos in <u>Dokument 3</u>, die die Entwicklung des Monarchfalters zeigen angeschaut werden. Die Schüler können kommentieren, was sie sehen.
- Die Schüler können die Metamorphose des Schmetterlings mit Bewegungen darstellen. *Das Ei*: auf dem Boden hocken, die Knie sind an die Brust herangezogen und werden von den Armen umschlungen; *Die Raupe*: auf dem Boden liegen und sich schlängelnd wie ein Wurm vorwärts bewegen; *Die Puppe*:

Umwandlungsprozesse_Schmetterling Beschreibung der Unterrichtsaktivitäten © EFSZ-EPLC 2011 Z. Royer (Université des Antilles et de la Guyane) aufrecht stehen ohne sich zu bewegen, die Arme sind vor der Brust verschränkt, der Kopf ist nach unten gerichtet, das Kinn liegt auf der Brust; *Der Schmetterling*: die Kinder ,entfalten ihre Flügel' und fliegen durch die Klasse.

- Gruppenarbeit: jede Gruppe illustriert den Lebenszyklus des Schmetterlings, indem sie unterschiedliche Techniken und Hilfsmittel verwendet: Malerei, Buntstift, Collage..., auf Tonkarton, Zeichenkarton, Holztafel, normales Papier, Pappteller... Die Arbeiten jeder Gruppe werden im Klassenraum ausgestellt. Abhängig vom Schülerniveau können die Schüler ihren Bildern kurze Beschreibungen hinzufügen.
- <u>Raupen-/ Schmetterlingsspiel</u>: jedes Kind hat einen Schal oder ein Stück Stoff. Die Schüler legen sich auf den Schal und winden sich wie eine Raupe, indem sie den Schal unter ihrem Körper behalten. Sie hören dem Lied zu, das der Lehrer singt und führen die zugehörigen Bewegungen aus. Der Lehrer singt nach der Melodie von *Bruder Jakob/Frère Jacques*:

Die Raupen kriechen, die Raupen kriechen, überall herum, überall herum. Sie kriechen in dem Garten, sie fressen alle Blätter, schmatz, schmatz, schmatz. Schmatz, schmatz!

Die Raupe wird zur Puppe, die Raupe wird zur Puppe, überall, überall. Überall im Garten, überall im Garten, spinn, spinn, spinn, spinn, spinn. (Die Schüler rollen sich zu einer Kugel zusammen und bedecken ihren Kopf mit dem Schal.)

Die Schmetterlinge fliegen, die Schmetterlinge fliegen, überall herum, überall herum. Sie fliegen in dem Garten. Sie flattern mit den Flügeln. Flatter, flatter, flatt. Flatter, flatter, flatt. (Die Schüler fliegen mit dem Schal als Flügel.)

Inhalt des Moduls

Dokument 1 – Lebenszyklus

Dokument 2 - Gedicht

Dokument 3 – Fotos Monarchfalter

Material für Schüler

Material 1 - Schmetterling1

Material 2 - Schmetterling2

Material 3 - Lückentext

Material 4 - Beobachtungsprotokoll

Material 5 - Steckbriefe

Umwandlungsprozesse_Schmetterling_Dokument 1

Hör zu, was dein/-e Lehrer/-in über den Zyklus des Schmetterlings erzählt. Nummeriere die Bilder in der richtigen Reihenfolge. Schneide die Wörter ab und klebe sie an das entsprechende Bild. © EFSZ-EPLC 2011, C. Mackowiak
DER SCHMETTERLING

Name

Male ein Bild zu jedem Stadium im Lebenszyklus des Schmetterlings.

- 1. Der weibliche Schmetterling legt Eier auf einem Blatt ab. Die Eier bleiben solange auf dem Blatt liegen, bis die Larven schlüpfen.
- 2. Aus den Eiern schlüfen Larven oder Raupen.

3. Die Raupe verpuppt sich in einem Kokon und schläft ein. Sie wird eine Puppe.

4. Die Puppe öffnet sich und der Schmetterling kommt heraus.

Umwandlungsprozesse_Schmetterling_Material 2

DER SCHMETTERLING

Name_____

Vervollständige die Sätze über den Entwicklungszyklus des Schmetterlings.

att.
d ein
nd
d d

_____ fort.

Umwandlungsprozesse_Schmetterling_Material 3

Name:

Ich habe einen Schmetterling gesehen:

am (Datum) _____.

Wo:_____

Farbe : _____

Name : _____

Wie war das Wetter zu der Zeit: (kreuze an)

0

Mal deinen Schmetterling oder kleb ein Foto auf!

Schmetterlinge bei uns

Name	Lebensweise	Aussehen
Der Zitronenfalter	die Nahrung: Der Schmetterling frisst Blütennektar. (z. B. Flieder) Die Raupe frisst Blätter von Sträuchern. (z. B. Faulbaum) Schmetterling zu beobachten ¹ : JFMAMJJJASOND * * * * * * * * * *	
	die Farben:	
	zitronengelb, vier Punkte: orange	
	ale Nanrung: Der Schmetterling frisst Blütennektar	
Der kleine Fuchs	Die Raupe frisst Blätter von Brennnesseln.	E A
	Schmetterling zu beobachten: J F M A M J J A S O N D * * * * * * * * * *	
	die Farben:	- AAA
	orange, Rand : schwarz, weiß, blau	-
Das Tagpfauenauge	La nourriture (Nahrung): Der Schmetterling frisst Blütennektar (z.B. Veilchen, Klee, Disteln) und saugt auch Saft von reifem Obst. Die Raupe frisst Blätter von Brennnesseln und auch Obst.	
	Schmetterling zu beobachten: J F M A J J A S O N D *	
	Les couleurs (Farben):	8-1
	rot-braun, Augenflecken unten: blau / oben: blau, weiß, rot	

¹Bitte beachten: Das Vorkommen der Schmetterlinge ist auch vom Wetter abhängig!

Dokument 2: Gedicht zum Schmetterling

Schmetterling - Flatterding

Schmetterling – Flatterding, flattert still – wie er will, fliegt ganz hoch – höher noch, schwebt im Kreis – keiner weiß.

Fliegt er weg – ins Versteck? Bleibt er da – mir ganz nah? Dreht er sich – sieht er mich? Kommt er bald – macht er halt?

Schmetterling – Flatterding! Jetzt, hurra – bleibt er da, setzt sich her – freut mich sehr, schüttelt sich – kitzelt mich, bleibt dann still – wie ich will. Schmetterling – schönes Ding.

(in: http://www.lehrerweb.at/gs/projekte/be/proj1/gedicht.htm)

Kleiner Fuchs (Foto: Renate Krüger)

CLIL-module

I Lesson Planning

General aims/goals

- Are the teaching aims clear?
- □ Are the learning outcomes defined?
- □ Is the function of the mobile lab clarified?

Content

- □ Is the module content linked to past learning?
- □ Is the presentation of new content clear?
- □ Is the content accessible?
- □ Is content distributed in different, progressive steps?
- □ Is a progression from simpler to more complex content elements provided?
- □ What impact does the use of the mobile lab have on making the content accessible?
 □ none □ some □ extensive

Cognition (thinking skills)

- □ Which thinking skills are involved in the steps of the different modules:
 - Lower-order thinking skills: defining, identifying, classifying
 - □ *Higher-order thinking skills*: explaining, applying, comparing, hypothesizing ?
- □ Are appropriate *strategies* provided to develop thinking skills? Which ones?
- □..... □ What impact does the use of the mobile lab have on cognitive processing?
 - □ none □ some □ extensive

Communication (language)

- □ Which language activities are involved?
 - listening
 - □ reading
 - □ speaking
 - \Box interacting (student \leftarrow teacher)
 - □ interacting (student ← teacher)
 - □ writing
- □ Are language functions (grammar/structures and vocabulary) defined in detail?
- □ Are interactional functions (agreeing, disputing, questioning) defined in detail?
- □ Are the students involved in *using the* language? To which degree (%)?
- □ Are the students involved in *learning the* language? To which degree (%)?

Communication (interaction)

- □ To what extent do the students use code-switching / code-mixing: □ occasionally □ extensively
- $\hfill\square$ To what extent does the teacher use code-switching / code-mixing: $\hfill\square$ occasionally $\hfill\square$ extensively

Which CALP functions are involved? (CALP: Cognitive Academic Language Proficiency)

□ Which socio-communicative functions (BICS: Basic Interpersonal Communicative Skills) are involved?

□ What impact does the use of the mobile lab have on communication:

□ (student – teacher): □ none	□ some	extensive
□ (student – student): □ none	□ some	extensive

Culture / Community

- Does the content offer opportunities to develop/expand social/cultural perspectives?
- □ Which curriculum links to other subjects can the content encourage?

?

.....

CLIL-module

II Lesson Delivery & Outcomes

Lesson planning review

- Does each step provide a balanced quantity of materials and tasks?
- □ Are the planning details appropriate (time, level and complexity of activities)?

Teaching & learning strategies

□ Which strategies are used to link new information to previous learning?

- brainstorming
- □ questions
- □ key words
- □ guessing
- games (e.g.riddles), contests
- □ other:
- □ Which strategies are used in order to make input comprehensible? (List items!)
 - $\hfill\square$ oral scaffolding questioning, paraphrasing, thinking aloud
 - $\hfill\square$ visual scaffolding / visual aids
 - □ key vocabulary emphasizing
 - □ language input appropriate for students' proficiency level
 - □ graphic organizers, mind maps
 - □ mobile lab activities

□ other:

- Which *thinking strategies* are used to *support learning* (comprehension & production)
 oral scaffolding questioning
 - □ framing
 - □ mind mapping (unstructured, free-flowing)
 - concept mapping (structured mind map)
 - □ cubes (circle, underline, box, evaluate, solve)
 - summarizing
 - □ reviewing

□ other:

Classroom Management (instructional organizers)

- □ Which *classroom management* activities are planned and executed?
 - □ teacher's speech
 - □ group work
 - □ pair work
 - □ individual activities
 - □ warm up
 - □ exercises or tasks integrating language improvement and content learning
 - □ tasks focusing content and real world connections
 - mobile lab activities managed by students

□ other:

Teaching resources

- □ Which teaching materials are provided?
- □ Are the materials authentic or adapted for classroom use?
- □ Which of these are provided by the mobile lab?
- □ Which of these are generated for the use of the mobile lab?
- Does the use of the mobile lab clearly support the learning of content?
- Does the use of the mobile lab clearly support the learning of language?
- Does the use of the mobile lab clearly support student interaction?
- Does the use of the mobile lab clearly support students' management skills?

□ other:

CLIL-STEM Lesson Planning / Template / TTC

Lesson (title)	Subject/Topic:
Language competence level A1 A2 + B1 B2 C1 B	Prerequisites / requirements: (e. g.: language or content revision or preparation; use of L1 in specified teaching segments)
Class/grade:	Age of learners:
Number of students in class:	Duration of lesson(s):
Content of lesson:	
Teaching aims/objectives	
Communication:	
Cognition:	
Culture/ community/ citizenship:	

FL/STEM lesson planning template based on 4Cs (see next page) (content, communication, cognition, culture)

phase time	Content	Objective/Competence ("can-do" statements)	Student activity	Social form/ setting	Material, media, mobile lab	Language: subject specific terminology	Language: communication & interaction	Teacher activity	Notes, comments on processes & outcomes = including affective outcomes, (self-) evaluation
trigger									
hypothesis									
experimen- tation, (processes, results) verification of hypothesis									
conclusion									
transfer generalization application									

FL/STEM and the domains of the 4Cs

C1	Content / Learning outcomes	"know" (content): "be able to" (content, communication): "be aware" (content, cognition):
C2	Communication: Language learning & Interaction	Vocabulary (revisited) Vocabulary (new): subject matter specific (CALP) Vocabulary (new): general (BICS) Structures (focus on grammar) Language functions (information, argumentation, questioning, reasoning)
C3	Cognition / cognitive processing: LOTS & HOTS	Remembering / Identifying Comparing Classifying Predicting Reasoning Synthesizing / creating
C4	Culture / Community	Awareness (of scientific topic as relevant for the culture / community) Involvement (project continuation outside of classroom) Communication (proliferation of scientific results in community)

CLIL/STEM Observation Checklist

Grade Level: Number

Number of Students:

Date:

Lesson Observed: (1) (2) (3) Duration of Lesson (minutes):

The following categories identify criteria for CLIL-STEM lessons (delivery and outcomes) - see details in (1) lesson planning template and (2) assessment checklists. **This checklist serves as the third component: observation**. <u>Note:</u> Not all features may be observable in any one lesson; there may be others not listed here; use space provided at bottom of page to add further categories. Also, observers are advised to use the lesson plans as an additional reference tool.

Indicators / observed features of achievement	observed observed partly not observed no answer / does not apply	1 2 3 0	Comments	
1. Lesson structure, design, and outcomes				
Planned objectives / learning outcomes are clearly formulated and and activities of the lesson.				
The quantity of materials and tasks reflect a balance of individual	learning phases.			
Content is designed / modified to correspond with learner cognitiv	re level.			
Language is designed / modified to correspond with learner comp	rehension level.			
Learning outcomes reflect knowledge (content).				
Learning outcomes reflect skills & abilities (communication).				
Learning outcomes reflect awareness (cognition, transfer).				
Lesson reflects 5 methodological steps of STEM inquiry approach (experimentation – verification/conclusion – generalisation/transfer	(trigger – hypothesis - ·).			
2 Taraking 9 Laguning Churchanias				
2. Teaching & Learning Strategies	proing (o.g. brainstorming			
eliciting keywords, guessing/hypothesizing).	arning (e.g. brainstorning,			
Routine activities are used to quickly engage students in learning, communicating.	experimenting and			
Specific strategies are used to make input comprehensible (e.g. sc organizers, body language).	caffolding, graphic			
Specific thinking strategies are used to support learning in the cog mind-mapping, cubing, summarizing).				
3. Content, Language & Communication				
Language functions (grammar, structures, vocabulary) are explain				
necessary (= focus on form).				
Interactional functions (agreement, disagreement, questioning) are freely used by learners (= focus on communication).				
Teacher encourages code-switching in order to keep communication	ve flow alive.			
Learners also make use of code-switching without teacher encoura	agement.			
Content stimulates students' use of BICS in exchanging their ideas with each other.				
Content stimulates students' use of CALP in exchanging their ideas with each other.				
The use of the mobile lab has a clear impact on communication.	na			
The use of the mobile lab has a clear impact on cognitive processi	ng.			
4. Classroom and Learning Processes Management / Mobil	le Labs		-	
Classroom management activities observed include:				
□ teacher's speech; □ group work; □ pair work; □ individual activit				
Learning processes management activities observed include:				
 warm up activities; tasks integrating language and content; of content to other contexts; tasks generated by students spont anaif() 				
Specify) Materials used in losson have been generated/medified for use in				
The use of the mobile lab supports the learning of STEM content				
The use of the mobile lab supports the learning of language				
The use of the mobile lab supports the use of language in interaction.				
The use of the mobile lab supports students' management skills.				
5. Other				

Geometry: Polygons and Polyhedra

Overview

Participants will explore and discuss polygons and polyhedra.

Category: Math, Science, Engineering

Learning Goals

- Discuss and use polygon, polyhedral, and solids terminology
- Experiment using the scientific method
- Construct and test space figure models

Participants

The activity can be conducted with almost any number of participants and one session leader.

Materials

Construction Materials	Scissors
 Pieces: Toothpicks, straws, or some other material for constructing Connectors: Mini marshmallows 	Solids (e.g. die, rectangular box, can of food, ball, pyramid, etc.)
raisins, gum drops, modeling	Supplemental Shapes and Solids
clay, or some other connector material	Sheet
Activity Sheet, one per participant	Pencil/ Pen

Activity

Suggested time: 90 minutes

Setup

Have various solids and/or pictures of shapes and solids placed around the tables or work areas for participants to see as they arrive.

Polygons

What is a polygon? (a 2-dimensional shape made up of straight lines)

Have each participant match the name of the shape with the picture of the shape.

How many sides does a "googolgon" have? (10^100 sides)

What shapes are on the surface of a soccer ball? (black pentagon and white hexagon)

Have participants make a square out of pieces and connectors. Stand it upright.

Is it sturdy? (no)

Have participants make a triangle out of pieces and connectors. Stand it upright.

Is it sturdy? (yes)

Polyhedra

What is a polyhedron? (a 3-dimensional space figure made up of flat faces; there are no curved surfaces)

List some space figures (solids) that are polyhedra. (Polyhedra: Cube,

Rectangular Space Figur, Pyramid with Square or Triangular Base)

List some space figures (solids) that are not polyhedra. (Cylinder, Cone, Sphere)

Have participants construct a tetrahedron (pyramid with a triangular base).

Have participants hypothesize about the number of tetrahedral it will take to support a book. Then, put them in small groups to test their hypothesis.

Discuss the results of their experimentation with using tetrahedra to support a book.

What shape is common to both the triangular pyramid and the square pyramid?

Where else do you see this shape? Take a walking tour, if feasible. (The triangle is a "strong" shape. It can be found in roof construction, supports under tables, wheelchair ramps, etc.)

Credits

Activity packet developed by Dawn Wiggins

The Shape of Things Participant Activity Sheet

Polygon:

List the number of sides for each shape; then, match the name of the shape with the shape.

Triangle

Quadrilateral

Pentagon

Hexagon

Heptagon

Octagon

How many sides does a "googolgon" have?

What shapes are on the surface of a soccer ball?

Make a square out of pieces and connectors. Stand it upright. Is it sturdy?

Make a triangle out of pieces and connectors. Stand it upright. Is it sturdy?

Polyhedron:

List some space figures (solids), polyhedra or otherwise.

Construct a tetrahedron (pyramid with a triangular base).

Supporting a book with tetrahedra.

Hypothesis: A book can be supported with ______ tetrahedra.

Form small groups and experiment to see how many tetrahedra it takes to support a book.

It takes ______ tetrahedra to support a book.

What shape is common to both the triangular pyramid and the square pyramid?

Where else do you see this shape?

Supplemental Shapes and Solids

Presentations

Presentation 1: Task based language learning and teaching

Presentation 2: CLIL-Principles

Presentation 3: CLIL- the 4 Cs- C1 – Content

Presentation 4: CLIL - the 4 Cs- C2 BICS & CALP

Presentation 5: CLIL – the 4 Cs- C3 – Cognition - LOTS & HOTS

Presentation 6: CLIL – Assessment

Task-based language learning and teaching / Handlungsorientiert Lernen und Lehren

Gerhard Bach, Universität Bremen

© Gerhard Bach

Lisas Eintrag im Lerntagebuch / Lisa's entry in her learning diary

"Lisa"

- Alter: 8 Jahre, 3. Klasse Grundschule (Deutschland)
- □ 1. Lernjahr Englisch als Fremdsprache
- Eintrag in ihr Lerntagebuch am Ende des Schuljahres
- Ich mag Englisch, weil wir da raus dürfen und englische Spiele spielen und englische Lieder singen. Am liebsten mag ich im Buch die Geschichten lesen. Wenn ich lese, schau ich die Bilder an und dann kann ich die Wörter besser sagen. Wenn ich schreibe, denke ich auch an die Bilder. Ich finde es lustig, wenn ich "how are you" zu meiner Lehrerin sage auf dem Pausenhof und sie macht große Augen. Manchmal spreche ich lustige Wörter nur so für mich. Blöd find' ich Rechnen auf Englisch, die Zahlen hören sich so komisch an: "four*teen*", "fif*teen*" und so weiter.
- Haben Sie ähnliche Erfahrungen?

- Lisa"
 - age 8, third grader in German primary school,
 - □ first year EFL learner
 - entry in her personal language portfolio (ELP) (transl. from German):
- I love English because we get to go outside and play "English" games and sing songs. I like reading the stories in our book best. When I read I look at the pictures and this helps me say the words better. When we write I also think of the pictures. I think it's funny when I say "hello, how are you" in English to my teacher in the hallway and she looks at me in surprise. I sometimes say funny words to myself. I hate doing math in English, the numbers sound crazy: "four*teen*", "fif*teen*" and so on.
- Do you have similar experiences?

Lisas Eintrag – pädagogisch betrachtet Lisa's entry – the educator's view

- Ich mag Englisch, weil wir da raus dürfen und englische Spiele spielen und englische Lieder singen. Am liebsten mag ich im Buch die Geschichten lesen. Wenn ich lese, schau ich die Bilder an und dann kann ich die Wörter besser sagen. Wenn ich schreibe, denke ich auch an die Bilder. Ich finde es lustig, wenn ich "how are you" zu meiner Lehrerin sage auf dem Pausenhof und sie macht große Augen. Manchmal spreche ich lustige Wörter nur so für mich. Blöd find' ich Rechnen auf Englisch, die Zahlen hören sich so komisch an: "fourteen", "fif*teen*" und so weiter
- I love English because we get to go outside and play "English" games and sing songs. I like reading the stories in our book best. When I read I look at the pictures and this helps me say the words better. When we write I also think of the pictures. I think it's funny when I say "hello, how are you" in English to my teacher in the hallway and she looks at me in surprise. I sometimes say funny words to myself. I hate doing math in English, the numbers sound crazy: "fourteen", "fifteen" and so on.

Lisas Eintrag – pädagogisch betrachtet Lisa's entry – the educator's view

- Ich mag Englisch, weil wir da raus dürfen und englische Spiele spielen und englische Lieder singen. Am liebsten mag ich im Buch die Geschichten lesen. Wenn ich lese. schau ich die Bilder an und dann kann ich die Wörter besser sagen. Wenn ich schreibe, denke ich auch an die Bilder. Ich finde es lustig, wenn ich "how are you" zu meiner Lehrerin sage auf dem Pausenhof und sie macht große Augen. Manchmal spreche ich lustige Wörter nur so für mich. Blöd find' ich Rechnen auf Englisch, die Zahlen hören sich so komisch an: "fourteen", "fif*teen*" und so weiter.
- 1 Kulturelle Dimension; Lernen als "Spiel"; kreative Interaktion cultural dimension of language learning and language learning as "playful" / creative interaction
- 2 Vernetzung sprachlicher und visueller Impulse networking reading with visual and aural/oral signals
- 3 Vernetzung schriftsprachlicher und visueller Impulse networking writing with visual signals
- 4 soziale Dimension des Lernens und Aktivierung ("empowerment") von Sprachhandlungen social dimension of communication and empowerment through languaging
- 5 emotionale Dimension: Sprache und Klang sense of language as emotion

The learning cycle in the activity-designed approach Der Lernzyklus im handlungsorientierten Lehr-/Lernansatz

Teaching and Agency / Autonomie (learner centered / activity-designed approach)

Aspects of the activity-designed approach are:

- □ decision-making in the classroom;
- relationships between structure of language and the learning process;
- relationship between perception, action and understanding;
- learner's relationship to the world inside/outside classroom;
- learner's empowerment to monitor and control learning processes.
- Source: van Lier, Leo. "Action-based Teaching, Autonomy and Identity." *Innovation in Language Learning and Teaching,* vol. 1, no.1 (2007): 46-65.

- Handlungsorientierung bedeutet f
 ür die Lerner:
 - □ Entscheidungen treffen beim Lernen;

schools: Fulure La

- Beziehungen herstellen zwischen Sprache und Lernprozess;
- Beziehungen herstellen zwischen Wahrnehmen, Verstehen und Handeln;
- Beziehungen herstellen zwischen dem Unterricht und der außerschulischen Welt
- Den eigenen Lernprozess beobachten und kontrollieren können.
- Quelle: van Lier, Leo. "Action-based Teaching, Autonomy and Identity." *Innovation in Language Learning and Teaching,* vol. 1, no.1 (2007): 46-65. Deutsche Übersetzung: Gerhard Bach

Communicating in activity-designed learning contexts Kommunikation in handlungsorientierten Lernkontexten

- T: Richard, where is your homework?
- S: I couldn't do it. I was by my uncle and I come late at home.
- *T:* What time was it when you came home? When did you come home from your uncle's?
- S: At eight or so. At half past eight.
- T: And what did you do at your uncle's?
- S: We repaired the car.
- T: Your uncle's car?
- S: Yes. We had hmm Probleme hmm problems. We did not find a – 'n Engländer, an Englishman (laughs) – so'n (mumbles, class laughs)
- T: Well, what you mean is a tool, ein Werkzeug,, for turning nuts ... (makes gesture). I think it's called a spanner. Did you find a spanner in the end?
- S: No.
- T: So you couldn't repair the car after all?
- S: No, we couldn't. But we hmm tried long, till late in the night.
- T: I see. And therefore you couldn't do your homework. Well, do it for tomorrow then, will you?

Action-designed (language) learning is

 experiential, contextual and authentic erfahrungsbasiert, unmittelbar und authentisch
 learning activities

schools: Fulure Labs

- interactive and autonomous engagiert, interaktiv und autonom communicative processes
- learner and learning oriented prozess-, lerner- und lernorientiert
 task processing
- □ product oriented / ergebnisorientiert
 - results of classroom based learning activities
- emancipatory / emanzipatorisch
 - development of social competences
- □ holistic / ganzheitlich
 - the learner's personality and individuality

Source: Bach/Timm (2013): 17-18

© Gerhard Bach

Questions / comments / feedback?

© Gerhard Bach

CLIL – Principles

Gerhard Bach CLIL Consultant Universität Bremen

You can analyse the past, but you need to design the future. That is the difference between suffering the future and enjoying it.

Wir können die Vergangenheit analysieren, aber die Zukunft müssen wir entwerfen. Der Unterschied zwischen beiden ist, die Zukunft ertragen zu müssen oder sich ihrer erfreuen zu dürfen.

Edward de Bono

CLIL "very simply" is / "Einfach gesagt" ist CLIL

... ein Lehr- und Lernansatz mit doppeltem Fokus, bei dem die L1 und eine weitere Sprache in kommunikativen Settings eingesetzt werden, um Wissen und Kompetenzen sowohl im Inhaltsbereich als auch im sprachlichen Bereich zu fördern, mit Bezug zu vordefinierten Kompetenzstufen. a dual-focused teaching and learning approach in which the L1 and an additional language are used in communicative settings for promoting both content mastery and language acquisition to predefined levels.

Quelle / Source: CCN – CLIL Cascade Network – 2009

CLIL – Curriculum: 4 Cs (broadly speaking)

- Content (context): topic / theme Inhalt / Thema
- Communication: language & interaction / Sprache & Interaktion
- Cognition: mental processing / mentale Verarbeitungsprozesse
- Culture (community): social environment
 Schule und Umwelt als soziale Lernorte

CLIL – komplexes Netzwerk / complex network

CLIL (= Content and Language Integrated Learning) ist ein didaktisches Konzept, bei dem ein Sachfach, z.B. Kunst, Musik, Physik, Geschichte oder Sport, in einer Fremdsprache unterrichtet wird. Sprache und Inhalt werden integrativ gelernt. In der Auseinandersetzung mit authentischen Lernaufgaben, in denen Materialien und Inhalte der realen Welt bearbeitet werden, können die Lerner sowohl ihre fremdsprachliche Kompetenz erweitern als auch ein tiefer gehendes Verständnis der jeweiligen Inhalte erlangen. Der daraus resultierende Mehrwert ist in verschiedenen schulischen und außerschulischen Bereichen festzustellen. Sprachlich und inhaltlich integriertes Lernen in wirklichkeitsnahen Kontexten fördert darüber hinaus die interkulturelle Kompetenz.

CLIL (= Content and Language Integrated Learning)

is an instructional concept in which specific subject-matter, such as Art, Music, Physics, History, or Physical Education, is taught in a language different from the mother tongue. Language and content are learned in an integrative manner. In working with authentic learning materials, the learners expand their language competence and, at the same time, gain a deeper understanding of the subject matter in question. The added value resulting from this dual approach can be found in different areas inside and outside of the school environment. In addition, content and language integrated learning in real-life and context-specific situations promotes the development of intercultural competence.

Quelle / Source: Gerhard Bach: "Bilingualer Untericht: lernen – lehren – forschen." In: Bach/Niemeier (Hg.) *Bilingualer Unterricht: Grundlagen, Methoden, Praxis, Perspektiven.* 5. Auflage. Frankfurt: Lang (2010), pp. 5-22.

CLIL – komplexes Netzwerk / complex network 6 basic features / 6 grundlegende Elemente

- language learning = language use / Sprache lernen = Sprache benutzen, um zu lernen using language to learn (not learning to use language)
- contextualized language use / Sprache in realen Kontexten anwenden focus on function of language (not focus on form)
- situated language use / Sprache in konkreten Situationen anwenden learner's locality (the "here and now")
- knowledge and concept formation / Wissenszuwachs und Konzeptbildung general concepts ("rain") / scientific concepts ("precipitation")
- communication and interaction / Kommunikation und Interaktion inter-personal, culture-specific & cross-cultural
- management of learning / selbstregulierendes Lernen instructional environment, task/activity orientation, interdisciplinarity, selfaccess, language awareness

4 Cs – complex network (Coyle 2011)

The 4Cs Conceptual Framework

Networking the 4 Cs – what is "learning" in CLIL?

A CLIL lesson

- □ is not a language lesson
- neither is it a subject lesson simply transmitted in a foreign language
- Instead, a CLIL lesson
 - combines elements of the
 4 Cs in a dynamic manner
 - helps the learner to

Meeting Minds: towards holistic views of the curriculum

- ... make progress in knowledge, skills and understanding related to specific topics in the curriculum [content]
- ... to use language to learn whilst learning to use language [communication]
- ... develop thinking skills and link concept formation, understanding and language [cognition]
- ... become familiar with alternative perspectives and values, which deepen awareness of otherness and self.
 [culture]

4 Cs – Netzwerk: "Was ist "Lernen" in CLIL?

- CLIL-Unterricht ...
 - ist weder ein reiner Sprachunterricht,
 - noch ist er ein Fachunterricht, der nur in einer anderen Sprache stattfindet.
- CLIL-Unterricht ...
 - vernetzt die einzelnen Faktoren der 4 Cs und
 - unterstützt so den Lerner

- ... sein Wissen, seine Kompetenzen und sein Verständnis über konkrete Themen zu erweitern; (C1 content; auch context)
- dabei wendet er die fremde Sprache an, um Sachverhalte zu erlernen und sich mit anderen darüber auszutauschen; (C2 communication)
- so entwickelt er kognitive und sprachliche Fähigkeiten, mit denen er Konzepte bilden und erproben kann; (C3 cognition)
- zugleich macht er sich vertraut mit alternativen Sichtweisen und Werten, sowohl von sich selbst als auch von anderen. (C4 culture; auch community)

Networking the 4 Cs : promoting learning as activity

A CLIL lesson

- □ is not a language lesson
- neither is it a subject lesson simply transmitted in a foreign language

Instead, a CLIL lesson

- combines elements of the 4 Cs in a dynamic manner
- helps the learner to

 ... make progress in knowledge, skills and understanding related to specific topics in the curriculum [content]

schools: Fulure Labs 1

- ... use language to learn whilst learning to use language [communication]
- ... develop thinking skills and link concept formation, understanding and language [cognition]
- ... become familiar with alternative perspectives and values, which deepen awareness of otherness and self.
 [culture]

Culture is the foundation for content, communication and cognition to build on "Culture" ist das Fundament, auf dem Inhalt, Kommunikation und Kognition aufbauen
schools: Future Labs

CLIL – added value / Mehrwert

- fördert interkulturelle & kommunikative Kompetenz
- fördert multilingualen Interessen und Einstellungen
- eröffnet die Möglichkeit differenzierter Konzeptbildung
- intensiviert Kontakt zur Zielsprache
- erfordert keine zusätzlichen Unterrichtsstunden
- kooperiert mit anderen Fächer, ("fächerübergreifender,, Unterricht)
- bietet vielfältige Unterrichtsmethoden und Arbeitsformen (Mehrdimensionalität)
- erhöht die Motivation und das Selbstvertrauen der Lerner, sowohl sprachlich als auch fachlich

Quelle:

http://ec.europa.eu/education/languages/language-teaching/doc236_de.htm)

- builds intercultural knowledge and understanding as well as intercultural communication skills
- develops multilingual interests and attitudes
- provides opportunities to study content through different perspectives
- allows learners more contact with the target language
- does not require extra teaching hours
- complements other subjects rather than competes with them
- diversifies methods and forms of classroom practice
- increases learners' motivation and confidence in both the language and the subject being taught

Source:

http://ec.europa.eu/education/languages/language-teaching/doc236_en.htm

Need more information on CLIL and the 4Cs? Wo finde ich mehr über CLIL und die 4 Cs?

CLIL – Literatur/e Fok/cus: 4 Cs – Methoden / teaching methods

Dieter Wolff Franca Quartapelle

CLIL IN DEUTSCHER SPRACHE IN ITALIEN - EIN LEITFADEN

Juli 2011

© GOETHE-INSTITUT MAILAND

via San Paolo, 10 20121 Milano - Italien www.goethe.de/mailand

http://www.goethe.de/ins/it/de/lp/lhr/mat/clil/7 578029.html

Dramapädagogik für den bilingualen Unterricht

http://www.playingclil.eu/this-is-the-playingclil-ebook/

CLIL – Literatur/e Fok/cus: Einführung & Beispiele / Introduction and examples ελληνιστί

ΕΓΧΕΙΡΙΔΙΟ CLIL

- 1. Einführung in CLIL
- 2. Warum / wozu CLIL?
- 3. Die 5 Cs
- 4. Der CLIL-Ansatz
- 5. Unterrichtsbeispiele
- 6. CLIL Evaluierung
- 7. Videos

http://www.languages.dk/clil4u/index.html#Guidebook

ΕΓΧΕΙΡΙΔΙΟ CLIL

Ορολογία:	4
Δομή του Εγχειριδίου	5
Κεφάλαιο 1: Εισαγωγή στο CLIL	6
1.1. Η πρόοδος του CLIL	6
1.2. Λοιπόν, τι ακριβώς είναι το CLIL;	6
1.3. Χαρακτηριστικά του CLIL	7
	•
	•
2.1. Ιαιριαζεί το CLIL σε ολούς τους εκπαιδευτικούς;	9
2.2. Ποια είναι τα οφέλη από τη χρήση του CLIL;	11
2.2.1. Συχνές Ερωτήσεις Εκπαιδευτικών	12
2.2.2. Συχνές Ερωτήσεις Μαθητών	19
2.2.3. Πώς εμπλέκονται οι γονείς	21
Κεφάλαιο 3: Τα 5Cs	22
3.1. Περιεχόμενο	22
3.2. Επικοινωνία	23
3.3. Ικανότητες	23
3.4. Κοινότητα	23
3.5. Γνωστική Ικανότητα	23
3.6. Ο Τροχός του Bloom & η Σωστή Επιλογή Εντολών	25

It's time to talk CLIL

CLIL – Principles

Gerhard Bach CLIL Consultant Universität Bremen

CLIL – the 4 Cs: C1 - Content

content / communication / cognition / culture

Gerhard Bach CLIL Consultant (University of Bremen, Germany)

4 Cs – review: inter-connections

A CLIL lesson

- □ is not a language lesson
- neither is it a subject lesson simply transmitted in a foreign language

Instead, a CLIL lesson

- combines elements of the
 4 Cs in a dynamic manner
- helps the learner to

 make progress in knowledge, skills and understanding related to specific topics in the curriculum [content]

schools: Fulure Labs

- ... to use language to learn whilst learning to use language [communication]
- ... develop thinking skills which link concept formation, understanding and language [cognition]
- ... become familiar with alternative perspectives and values, which deepen awareness of otherness and self.
 [culture]

C1 - content

schools: Fulure Lat

- Are all subjects taught in school equally useful for CLIL?
- Which are the advantages of learning content matter in another language?
- Is all content equally suitable for learning?
- What are the special requirements concerning MINT subjects?
- How can input become comprehensible when the focus needs to be on content and language at the same time?
- What's your opinion on this?

Take notes on one of these questions for a 3 minute presentation.

CLIL – C1 – Content Guiding principle: Using language to learn

- It is content which determines the learning route.
- If it were language, imagine how limiting this would be. Example: learners have not yet been introduced to the past tense. Try to have a conversation with someone using only the present tense in authentic settings - it is almost impossible.
- If the content requires use of the past tense and learners have not studied this, then CLIL lessons will enable learners to access the language needed in the defined context in different ways. This may initially be in the form of using key phrases in the past tense without studying the whole tense formation at this stage.
- The emphasis is always on accessibility of language in order to learn.

Source: Coyle (2011)

schools: Fulure Labs

CLIL – C1 – Content

Guiding principle: Using language to learn content. Language lesson or CLIL lesson?

Source: Bentley (2010): 9

CLIL – C1 – Content

Guiding principle: Using language to learn subject matter.

- Examples:
- Language teachers developing a content type approach to a theme for example "House and Home", and carrying out a comparative study between house and home in an African country and in one's own country & culture.
- Tandem project which involves both language teachers and subject teachers planning together. Example: a study on "Glocalization – the global world and local concerns" (language and geo-politics / social studies).
- Cross-curricular project on "Peace" in a foreign language, involving different approaches such as scientific, geographical, historical, political, economic, literary and artistic.
- \rightarrow We will investigate a concrete example later.

CLIL – C1 – Content

Guiding principle: Using language to learn subject matter. Lesson planning

Defining the topic

- What will I teach?
- What will my students learn?
- What are my teaching aims/objectives?
- What are the learning outcomes?
- What are the assessment criteria?
 - \rightarrow Step 1: All of these in terms of content, communication and cognition
 - \rightarrow Step 2: Focus on content
 - \rightarrow Step 3: concretization see lesson planning template

CLIL – the 4 Cs: C1 - Content

content / communication / cognition / culture

Gerhard Bach CLIL Consultant (University of Bremen, Germany)

CLIL – the 4 Cs: C2 - BICS & CALP

content / communication / cognition / culture

Gerhard Bach CLIL Consultant (University of Bremen, Germany)

schools: Fulure Labs

polassin

Reves Man 18/24

\$4408

Startsein

aatsang

RUNA

is

"Sprache im Unterricht ist wie ein Werkzeug, das man gebraucht, während man es noch schmiedet." (W. Butzkamm)

Was

Adistokenten

sisteratie

6 Genticles Leben

Comudens.

Enlac

1242

£5906

mo

Bersteam

"Language in the classroom is like a tool that you use while you are still forging it."

CLIL - C2

- Content / subject matter / theme / topic
- Communication /interaction
- Cognition / thinking
- Culture / citizenship

Meeting Minds: towards holistic views of the curriculum

C2 – communication / interaction: typical questions / typische Fragen

How can we ensure high output of communication between the learners and their instructor and among learners themselves, even when the foreign language is still "foreign" to some? Wie können wir ein hohes Maß an Kommunikation zwischen Schülern und Lehrern und zwischen Schülern untereinander erreichen, selbst dann, wenn die Fremdsprache für die Schüler noch "fremd" ist?

- What are the specific communicative tools learners need in CLIL? How do we help them attain these? Welche besonderen sprachlichen Hilfsmittel benötigen die CLIL-Schüler? Wie helfen wir ihnen, sich diese anzueignen?
- CLIL the double focus of language-as-interaction: "learning to use language" (focus on form / "accuracy") "using language to learn" (focus on content / "meaning") CLIL – der doppelte Fokus von "Sprache als Interaktion": "die Sprache lernen (Fokus auf sprachlicher Form / Korrektheit) "die Sprache benutzen, um zu lernen" (Fokus auf Inhalt und Bedeutung)

focus on form (as part of language instruction) or focus on meaning (as part of CLIL)

Focus on form

Focus on meaning (Bedeutung)

- Learners consciously memorize language rules and functions, and (re-)produce them in a learning environment.
- Schüler erlernen bewusst sprachliche Regeln und (re-)produzieren sie in einem Lernkontext

- Learners are exposed to meaningful language input and use language spontaneously in meaning-focused interaction.
- Schüler erhalten sprachlichen Input in bedeutsamen Situationen und interagieren sprachlich spontan in entsprechenden Kontexten.

C2 – communication / interaction doppelter Fokus

 CLIL – the double focus of language-as-interaction: "learning to use language" (focus on form / "accuracy") "using language to learn" (focus on content / "meaning")

CLIL – der doppelte Fokus von "Sprache als Interaktion": "die Sprache lernen (Fokus auf sprachlicher Form / Korrektheit) "die Sprache benutzen, um zu lernen" (Fokus auf Inhalt und Bedeutung)

 Brainstorm on "double focus": an example from the subject you teach Brainstorm über den "doppelten Fokus: ein Beispiel aus Ihrem Fachunterricht C2 – BICS & CALP: Welche Sprache braucht das Lernen? Beispiel Physik: Flaschenzug / Pulley

Schüler:

"Am Flaschenzug mach' ich es so: Ich zähle die Seilstücke rechts und links von der losen Rolle und teile das Gewicht durch diese Zahl. Das ist dann die Zugkraft am Flaschenzug."

schools: Fulure Labs

Fachbuch:

"Hängt beim Flaschenzug die Last an *n* tragenden Seilabschnitten, so ist die am Seilende erforderliche Zugkraft F gleich dem *n*-ten Teil der Gewichtskraft der Last"

Quelle: adaptiert aus Josef Leisen: "Wie wird Sprache im Fachunterricht gelernt?" <u>http://sprachsensiblerfachunterricht.de/</u>

The complexity of learner language: BICS & CALP

BICS

Basic interpersonal communicative skills "Alltagssprache"

- BICS typically refers to concrete, observable things, people, and actions, and is typically supported by a considerable amount of contextual information.
- BICS = grundlegende Kommunikationsfähigkeiten, also Sprachkompetenz in der Alltagskommunikation und im zwischenmenschlichen Bereich

CALP Cognitive academic language proficiency "Fachsprache"

- CALP refers to cognitively demanding language (e.g. abstract nouns and complex syntax) as a tool for critical thinking.
- CALP = unterrichtsbezogene kognitive Sprachkenntnisse und Sprachkompetenz in der Fachsprache

schools: Fulure Labs

The complexity of CALP in CLIL

- academic language typically includes an increased variety in the vocabulary, such as the use of rare and/or abstract nouns;
- Syntactic and lexical variety which is cognitively demanding.
- In addition, the specific content forces the user/learner to be very precise in describing what they are learning / doing.

, Nutrition

Nutrition is a combination of processes which supply our body with the substances and the energy we need to live. There are four processes involved in nutrition:

- Digestion. This involves obtaining nutrients from food for our body to use. Digestion takes place in the digestive system.
- Respiration. This involves obtaining the oxygen we need to live, and releasing carbon dioxide. Respiration takes place in the respiratory system.
- Circulation. This involves transporting nutrients, oxygen and waste products throughout the body. Circulation takes place in the drculatory system.
- Excretion. This involves eliminating waste produced in our body. Excretion takes place in the excretory system.

Source: Essential Science Plus. Level 6 Primary http://www.richmondelt.es/w/catalogue/clil-textbooks/primary-1/

Digestive system.

Respiratory system.

Circulatory system.

Excretory system.

CLIL-English: Resource for Teachers

schools: Fulure Labs

ENGLISH TEXTBOOKS	CLIL PRIMARY TEXTBOOKS			
CLIL TEXTBOOKS	Natural Science			
Natural Science NEW!	2			
Social Science NEW!	6 a p			
• Music NEW!	Coold Colonoo			
Arts and Crafts	Social Science			
Top Natural Science				
Top Social Science				
Top Science				
Essential Science Plus				
Drawing and Painting Fun				
•Language Companion 🖳	Music			
SECONDARY >				
SUPPLEMENTARY MATERIAL				
Primary Catalogue	Top Natural Science			
Download				

© Gerhard Bach Source: http://www.richmondelt.es/w/catalogue/clil-textbooks/primary-1/

schools: Fulure Labs

BICS & CALP in CLIL general and subject-specific vocabluary

turbine generator renewable transmission	heat light sound	some tall use many	magnetic field conducting wires power plant
subject-specific voc. for talking about electricity production CALP	general voc. used in science <u>and</u> used in everyday situations CALP & BICS	often used words in general language <u>and</u> used in subject- specific language BICS & CALP	<i>compounds</i> used when when we talk about certain concepts CALP

Some of these words are easier to understand and use than others, but CLIL learners have to know all of them to follow instructions, to work on science questions, to prepare presentations, etc.

schools: Fulure Labs

BICS & CALP in CLIL handlungsbezogenes und fachbezogenes Vokabular

Zirkel	Mittelpunkt	ungefähr	steiler Anstieg
Umfang	Zahl	drum herum	plötzlicher Abfall
Durchmesser	Größe	viele	Gesamtergebnis
Fachspezifischer Wortschatz zur Beschreibung der Teile eines Kreises. CALP	Handlungssprach- licher Wortschatz, Anwendung sowohl im Alltag als auch im Fachdiskurs CALP & BICS	Häufig verwendete Wörter, primär alltagssprachlich, aber auch im Fachdiskurs BICS (& CALP)	<i>Kollokationen</i> , zur Beschreibung spezifischer Konzepte oder Prozesse CALP

Manche dieser Wörter sind einfacher zu verstehen und zu lernen als andere. CLIL-Lerner müssen sie alle anwenden können, um Aufgaben im naturwissenschaftlichen Bereich lösen zu können.

CLIL - C2

- Content / subject matter / theme / topic
- Communication /interaction
- Cognition / thinking
- Culture / citizenship

Meeting Minds: towards holistic views of the curriculum

Schools: Fulure Labs

Activating CLIL: C2 - Communication

- When second-language learners are involved in communication activities in the classroom
- that focus on the authentic exchange of information,
- and invite the expression of critical thinking skills,
- four areas of communicative competence are stimulated:
 - accuracy
 - coherence
 - appropriateness
 - effectiveness
- Thus the role of the teacher in CLIL is to
 - create contexts which enhance both content knowledge <u>and</u> language growth
 - provide communicative settings integrating content and language

- Wenn L2-Schüler im Unterricht in kommunikative Aktivitäten eingebunden werden,
- deren Fokus auf dem authentischen Informationsaustausch liegt
- und kritisches Denken anregt,
- werden vier Bereiche von kommunikativer Kompetenz stimuliert:
 - Genauigkeit
 - Stimmigkeit (Kohärenz)
 - Angemessenheit
 - Wirksamkeit
- Aufgabe der Lehrkraft ist es also,
 - Lernkontexte zu schaffen, die Wissenszuwachs ebenso fördern wie sprachlichen Zuwachs,
 - Kommunikationsanlässe zu schaffen, die Inhalt und Sprache miteinander vernetzen.

Questions? Comments? Fragen? Kommentare?

CLIL – the 4 Cs: C2 - BICS & CALP

content / communication / cognition / culture

Gerhard Bach CLIL Consultant (University of Bremen, Germany)

CLIL – C3 – cognition LOTS & HOTS

content / communication / cognition / culture

Gerhard Bach CLIL Consultant (University of Bremen, Germany)

CLIL - C3

- Content / subject matter / theme / topic
- Communication /interaction
- Cognition / thinking
- Culture / citizenship

schools: Fulure Labs

C3 – cognition : typical questions / typische Fragen

- Welche Bedeutung hat eine hohe bzw. niedrige Komplexität bei Denkprozessen?
- Sind kognitive Prozesse in verschiedenen Fächern unterschiedlich ausgeprägt (z. B. naturwiss. / sozialwiss. Fächer)?
- Welche Hilfsmittel können wir nutzen, um Denkprozesse auf den verschiedenen Kompetenzstufen anzuregen und sprachlich zu verarbeiten?
- Welche Art von Aufgaben müssen wir entwerfen, um komplexere Denkprozesse zu fördern – und welche Konsequenzen hat das für C1 (content) und C2 (communication)?
 © Gerhard Bach

- How does CLIL account for lower and higher thinking skills?
- Are cognitive processes subject specific and thus differrent in individual subject matter areas (science, social science, art, music)?
- In which way do subject-specific materials need to be structured so as to ensure the development or promotion of cognitive thinking skills? Are there tools we can use for this?
- What kind of activities do we need to generate in order to support complex thinking processes?

Schools: Fulure Labs C3 – kognitive Kompetenzen entwickeln

Aufgabe: ordnen Sie den Fragen "kognitive Anforderungen" zu

- 1. Benenne 6 Früchte auf dem Bild.
- 2. Finde etwas, das nicht rund ist und auch nicht eckig.
- Gruppiere die Nahrungsmittel in "Obst" und "Gemüse"
- 4. Kann man diese Sachen auch in Deinem Land anbauen. Warum? Warum nicht?
- 5. Schreibe ein Rezept für eine Gemüsesuppe oder einen Obstsalat

Kognitive Anforderung:

klassifizieren vergleichen kontrastieren erschaffen definieren benennen unterscheiden evaluieren hypothetisieren identifizieren ordnen voraussagen argumentieren erinnern synthetisieren

C3 – kognitive Kompetenzen entwickeln

Aufgabe: ordnen Sie den Fragen "kognitive Anforderungen" zu

- 1. Benenne 6 Früchte auf dem Bild.
- 2. Finde etwas, das nicht rund ist und auch nicht eckig.
- Gruppiere die Nahrungsmittel in "Obst" und "Gemüse"
- 4. Kann man diese Sachen auch in Deinem Land anbauen. Warum? Warum nicht?
- 5. Schreibe ein Rezept für eine Gemüsesuppe oder einen Obstsalat

- 1. benennen, erinnern, identifizieren
- 2. vergleichen, kontrastieren, identifizieren

schools: Fulure Labs

- 3. unterscheiden, klassifizieren
- 4. voraussagen, argumentieren
- 5. synthetisieren, erschaffen

Kognitive Prozesse - Blooms Taxonomie (1974) 6 Stufen von LOTS zu HOTS (lower / higher order thinking skills)

- Wie kann man die Auswirkung von Zeit auf Raum in einem Modell sichtbar machen?
- Wie hat die Erforschung des Weltraums unser Weltbild verändert?
- Welche Verbindung besteht zwischen Zeit und Raum?
- Wie lange braucht die Raumfähre, um die Raumstation zu erreichen?
- Warum können Enten fliegen?
 Warum können Raumkapseln fliegen?
- Wann begann das Zeitalter der Raumfahrt?

Ordering cognition: Bloom's taxonomy from lower to higher order thinking skills

Bloom's Taxonomy (revised)

- How would you illustrate the impact of time on space?
- How has the exploration of space impacted our world?
- What links are there between time and space?
- How long will it take the space capsule to reach the docking station?
- Why can ducks fly? Why can space capsules fly?
- When did the space age begin?

C3 – kognitive Kompetenzen & Beispiele

Kognitive Kompetenz	Kognitionsfördernde Aktivitäten	Lernaufgaben – Beispiele
erinnern	wiederholen, auswendig lernen	Wiederhole die Regel "Wärme entsteht, wenn " "Ein Dreieck ist gleichschenklig, wenn
identifizieren	bezeichnen, lokalisieren	Benenne drei Arten der Herstellung von Elektrizität.
ordnen	organisieren, Reihenfolge bilden	Erstelle eine Zeitschiene über die Entwicklung des Autos.
hierarchisieren	anordnen, zuordnen, Rangfolge erstellen	Erstelle eine Rangordnung für die 6 Arten von Mobilität.
definieren	erklären, darstellen,	Erkläre "Kapillaraktivität", definiere "Geschwindigkeit".
klassifizieren	nummerieren, gruppieren, zuordnen	gruppiere Fischsorten nach Häufigkeit des Vorkommens im Mittelmeer.
voraussagen	Erwartungen äußern, Ergebnisse antizipieren	Was passiert, wenn wir Substanz (a) mit Substanz (b) mischen?
Hypothesen bilden	Theorie erstellen	Wenn wir ein Blatt Papier flach auf eine mit Wasser gefüllte Wanne legen, dann kann folgendes passieren: (1.) (2.) usw.
Begründungen entwickeln	argumentieren, schlussfolgern	Der Benzinverbauch wird sinken, wenn
evaluieren	bewerten, beurteilen	Kommentiere die Argumente für / gegen den Einsatz von

CLIL – C3 – cognitive skills terms & examples

cognitive skill	classroom activity	example
remembering	recall, recognize, relate	reciting a verse from a poem
identifying	label, locate, match	name three types of electricity production
ordering	organize, sequence	Make a timeline for the development of atomic energy
ranking	order, put, place	Put the statements about atomic energy in order of their historical development
defining	explain, outline, show	Explain "capillary", define "velocity"
classifying	number, group, order	group "sour" items (acidity)
predicting	anticipate, expect	What will happen when we mix substances (a) (b)
hypothesizing	formulate a theory	If we , the consequence may be
reasoning	argue, conclude	The efficiency of fuel comsumption can be improved when
evaluating / creating	assess, comment on, judge, rate	Read a text on the defense of atomic energy and comment on the logic of its arguments

C3 – Kognitive Prozesse - Blooms Taxonomie (1974) 6 Stufen von LOTS zu HOTS (lower / higher order thinking skills) Verben zur Formulierung von Aufgaben nach Ruth Meyer: <u>www.arbowis.ch</u>

erinnern	verstehen	anwenden	analysieren	evaluieren	erschaffen
nennen	interpretieren	anwenden	isolieren	entscheiden	entwerfen
aufzählen	erklären	erstellen	auswählen	beurteilen	zuordnen
anführen	erläutern	ermitteln	entnehmen	bewerten	verbinden
aussagen	formulieren	herausfinden	sortieren	sortieren	tabellieren
ausführen	übertragen	lösen	vergleichen	klassifizieren	konzipieren
benennen	übersetzen	durchführen	einteilen	bestimmen	zusammen-
bezeichnen	deuten	berechnen	einordnen	begründen	stellen
erzählen	bestimmen	ausfüllen	bestimmen	auswählen	in Beziehung
berichten	identifizieren	eintragen	herausstellen	prüfen	setzen
beschreiben	definieren	drucken	analysieren	entscheiden	entwerfen
zeichnen	darlegen	planen	vergleichen	Stellung	entwickeln
skizzieren	ableiten	erarbeiten	gegenüber-	nehmen	ableiten
darstellen	demonstrieren	verwenden	stellen	evaluieren	ordnen
schreiben	zusammen-	bearbeiten	unter-		beziehen
schildern	fassen	speichern	scheiden		koordinieren
	herausstellen	sichern	untersuchen		
© Gerhard Bach		formatieren	testen		

Bloom's Taxonomy Verbs

When developing curriculum for your class, keep this list nearby. This will help you determine the level of response you are anticipating from your students.

Knowledge	Count, Define, Describe, Draw, Find, Identify, Label, List, Match, Name, Quote, Recall, Recite, Sequence, Tell, Write
Comprehension	Conclude, Demonstrate, Discuss, Explain, Generalize, Identify, Illustrate, Interpret, Paraphrase, Predict, Report, Restate, Review, Summarize, Tell
Application	Apply, Change, Choose, Compute, Dramatize, Interview, Prepare, Produce, Role-play, Select, Show, Transfer, Use
Analysis	Analyze, Characterize, Classify, Compare, Contrast, Debate, Deduce, Diagram, Differentiate, Discriminate, Distinguish, Examine, Outline, Relate, Research, Separate,
Synthesis	Compose, Construct, Create, Design, Develop, Integrate, Invent, Make, Organize, Perform, Plan, Produce, Propose, Rewrite
Evaluation	Appraise, Argue, Assess, Choose, Conclude, Critic, Decide, Evaluate, Judge, Justify, Predict, Prioritize, Prove, Rank, Rate, Select,

www.teach-nology.com/worksheets/time-savers/bloom/

© Teachnology, Inc. All rights reserved.

C3 – kognitive Kompetenzen ^{schools: Fulure Lobs} Aufgabe: Erstelle je 3 Fragen zu LOTS and HOTS Task: Write three questions for LOTS and HOTS

Erinnern – Verstehen – Anwenden – Analysieren – Evaluieren – Erschaffen

© Gerhard Bach

schools: Fulure Labs C3 – kognitive Kompetenzen Erstelle je 3 Fragen/Aufgaben zu LOTS and HOTS

Erinnern – Verstehen – Anwenden – Analysieren – Evaluieren – Erschaffen LOTS:

- 1. Welche Landschaftsformen sind hier zu erkennen? (Erinnern)
- 2. Erkläre das Klima, das hier vorherrscht (Verstehen)
- Finde heraus, welchen Einfluss der Park auf die Luftqualität hat? (anwenden)

HOTS:

- 1. Warum sind hier wohl so viele hohe Gebäude um den Park herum? (analysieren)
- 2. Inwieweit ist dieser Ort anders als der, wo Du wohnst? (evaluieren)
- Wenn Du ein Stadtplaner wärest, was würdest Du verändern, aus welchen Gründen und mit welchen Mitteln? (erschaffen)

schools: Fulure Labs CLIL – C3 – cognitive skills Task: Write three questions for LOTS and HOTS

Lower order questions:

- 1. What landscape features can you see? 8remember)
- 2. What kind of climate does this area have? (understand)
- 3. What is the impact of the park on the air quality? (apply)

Higher order questions:

- Why do you think are there so many tall building here? (analyze)
- In what ways is this place different from where you live? (analyze, evaluate)
- If you were a town planner, what would you change and why? (create)

Blooms Taxonomie = Strategiehilfe für Unterrichtsplanung = strategic aid for lesson planning

- Stufen =

 hierarchische Ordnung der
 Aufgaben =
 Schwierigkeitsgrad der zu
 vermittelnden Inhalte
 reflektieren
- Stufen = helfen zur Beschreibung der Kompetenzen (auch Einzelstunden übergreifend)
- Stufen =

Unterrichtssequenzen und ihre Vernetzung optimieren.

- levels =
 hierarchical ordering of tasks/activities = reflext on level of difficulty of conten to be taught
- levels = helps description of competences (individual lesson and larger modules)
- levels = help optimize networking of lesson sequences.

CLIL – C3 – kognitive Kompetenzen Beispiel Grundschule: Erinnern, Verstehen

schools: Fulure Labs

http://eplc.ecml.at/Modules/4Transformationdelanature/Lepapillon/tabid/2386/language/de-DE/Default.aspx

Umwandlungsprozesse, Schmetterling, Dokument 1

CLIL – C3 – kognitive Kompetenzen

schools: Fulure Labs

Beispiel Grundschule: Verstehen Analysieren

http://eplc.ecml.at/Modules/4Transformationdelanature/Lepapillon/tabid/2386/language/de-DE/Default.aspx

DER SCHMETTERLING

Name

Male ein Bild zu jedem Stadium im Lebenszyklus des Schmetterlings.

1. Der weibliche Schmetterling legt Eier auf einem Blatt ab. Die Eier bleiben solange auf dem Blatt liegen, bis die Larven schlüpfen. 2. Aus den Eiern schlüpfen Larven oder Raupen. 3. Die Raupe verpuppt sich in einem Kokon und schläft ein. Sie wird eine Puppe. 4. Die Puppe öffnet sich und der Schmetterling kommt heraus. 5. Der weibliche Schmetterling findet ein Männchen und legt Eier ab.

CLIL – C3 – kognitive Kompetenzen

Beispiel Grundschule: Verstehen, analysieren und reproduzieren http://eplc.ecml.at/Modules/4Transformationdelanature/Lepapillon/tabid/2386/language/de-DE/Default.aspx

DER SCHMETTERLING

Name	
Vervollständige die Sätze über den Entwicklungs	szyklus des Schmetterlings.
1. Der Schmetterling hat	Entwicklungsstadien.
2. Der weibliche Schmetterling legt	auf ein Blatt.
3. Aus dem Ei schlüpft eine	
 Nach ein paar Wochen verpuppt sich die schläft ein. 	und
5. Einige Wochen später öffnet sich die wunderschöner	und einschlüpft heraus und

CLIL – C3 – kognitive Kompetenzen

schools: Fulure Labs

Beispiel Grundschule: Anwenden, Analysieren

http://eplc.ecml.at/Modules/4Transformationdelanature/Lepapillon/tabid/2386/language/de-DE/Default.aspx

Beobachtungsprotokoll Ich habe einen Schmetterling gesehen: am (Datum)______. Wo : _______ Farbe: ______ Name des Schmetterlings: ______

Wie war das Wetter zu der Zeit: (kreuze an)

Mal deinen Schmetterling oder kleb ein Foto auf!

CLIL – C3 – kognitive Kompetenzen

Beispiel Grundschule: Evaluieren, (Erschaffen)

http://eplc.ecml.at/Modules/4Transformationdelanature/Lepapillon/tabid/2386/language/de-DE/Default.aspx

Schmetterling - Flatterding

Schmetterling – Flatterding, flattert still – wie er will, fliegt ganz hoch – höher noch, schwebt im Kreis – keiner weiß. Fliegt er weg – ins Versteck? Bleibt er da – mir ganz nah? Dreht er sich – sieht er mich? Kommt er bald – macht er halt? Schmetterling – Flatterding! Jetzt, hurra – bleibt er da,

setzt sich her – freut mich sehr, schüttelt sich – kitzelt mich, bleibt dann still – wie ich will. Schmetterling – schönes Ding.

http://www.lehrerweb.at/gs/projekte/be/proj1/gedicht.htm

schools: Fulure Labs

schools: Fulure Labs $C2 \rightarrow C3$ – Kompetenzentwicklung Lerner FOLS CALP Kognition hoch **Abstrakte Kon-Neue Konzepte** zepte erarbeiten entwickeln mit Hilfe von **Bildern, Grafiken,** Neue Fach terminologie etc. anwenden; **Sprachliches Gruppen-**Inventar: gespräche Wiederholung, führen, **Sprache Sprache** wenig Text diskutieren Kommuni-Kommuni-Vertrauten **Sprachlern**kation kation Lernstoff aktivitäten hoch niedrig wiederholen Alltagskommunik Im Voraus ation. gelernte Handlungssprache **Sprachmittel** sprachliche 1030 kommunikativ Korrektheit Wortschatzarbeit anwenden Kognition niedrig BICS

© Gerhard Bach

CLIL – C3 – Cognition

CLIL – C3 – cognition LOTS & HOTS

content / communication / cognition / culture

Gerhard Bach CLIL Consultant (University of Bremen, Germany)

CLIL – Assessment

Gerhard Bach CLIL Consultant (University of Bremen, Germany)

Assessment cycle: models & complexity

CLIL Assessment: criteria / context

Overall agreement among assessment experts:

- we assess learning / growth / increase of knowledge based on pre-defined criteria
 formative assessment: undertaken continuously
 - formative assessment: undertaken continuously during an educational process
- we evaluate results based on specific pre-defined criteria
 - summative assessment: undertaken at specific points during an educational process

Formative Assessment: 4 types

Туре	Purpose
 Performance assessment criteria-based formal or informal individual or collaborative 	 Find out what has been learned Observe and record stages of learners' progress Collect data / samples of work done
Peer assessmentcriteria-basedlearning outcomes defined	 Learners assess each other Learners give each other feedback Learners reflect on standards set by themselves and others
Self-assessment criteria-based learning outcomes defined) 	 Learners assess their own work ("can-do" statements) Learners reflect on standards set by themselves
Portfolio assessmentcriteria-baseddefined at beginning of course	 Find out what overall has been learned Select samples of good practice to record achievement

"A combination of self-centred learning for portfolio work, accompanied by formative assessment by the teacher and peer tutoring has proved highly efficient in the CLIL classroom." www.univie.ac.at/Anglistik/Views_0703.pdf

© Gerhard Bach

Performance Assessment: example 1 (CLIL4U Guide Book)

CONTENT

Criteria	4 - excellent	3 - good	2 - satisfactory	1 - not satisfactory
Use of topic-specific vocabulary in written work	All new words used appropriately in simple sentences	15 new words used appropriately in simple sentences	10 new words used appropriately in simple sentences	Fewer than 5 new words used appropriately in simple sentences
Identification of relevant information from different websites	Relevant information identified from at least three different websites	Relevant information identified from at least two different websites	Relevant information identified from at least one website	More than one website accessed but no relevant information identified

Performance Assessment: example 2 (CLIL4U Guide Book)

COOPERATION

Criteria	4 - excellent	3 - good	2 - satisfactory	1 - not satisfactory
Ability to cooperate in a group task	Student con- sistently per- forms well as a group mem- ber, showing initiative, organising task completion, and supporting all other group members	Student often performs well as a group member, showing initiative, organising task ompletion, and supporting all other group members	Student performs well as a group member at times, showing initiative, organising task completion, and supporting all other group members	Student acknowledges membership of the group but does little to help achieve group success

Performance Assessment: example 3 (CLIL4U Guide Book)

CREATIVITY

Criteria	4 - excellent	3 - good	2 - satisfactory	1 - not satisfactory
Originality in preparation and execution of diagrams and other visual materials	Student has at least three original design ideas and is able to prepare the resulting visuals	Student has at least two original design ideas and is able to prepare the resulting visuals	Student has at least one original design ideas and is able to prepare the resulting visual	Student makes some contribution to designing and preparing visuals

CLIL matrix

CLIL Matrix

The CLIL matrix:

- Developing teacher competences
- Self-assessment tool for teachers and trainers

CLIL – Matrix: 16 contact zones http://archive.ecml.at/mtp2/CLILmatrix/EN/qMain.html

CLIL Indicators:

Content - Culture Language - Culture Integration - Culture Learning - Culture

Content - Communication
 Language - Communication
 Integration - Communication
 Learning - Communication

Content - Cognition Language - Cognition Integration - Cognition Learning - Cognition

Content - Community
 Language - Community
 Integration - Community
 Learning - Community

Mehrwert / Added value

CLIL – Assessing teacher competences http://archive.ecml.at/mtp2/CLILmatrix/EN/qMain.html

 The CLIL-Matrix consists of 16 areas of competence of CLIL teachers.

schools: Fulure Labs

- Each field lists specific competences by combining "CLIL" and the "4Cs".
- All competences necessary for planning and conducting authentic CLIL lessons are included in the matrix.
- CLIL-Matrix = Selfassessment instrument

CS

4

CLIL–Matrix – Teacher Competences Example 1

Integration - Communication

1. The tasks that I use with my students lead to interactional communication

○ very much	C much	C somewhat	C not much	C hardly at all
2. In my classroom,	students inte	ract with each othe	r and the teacher	
O very much	C much	C somewhat	O not much	C hardly at all
3. As a teacher, I us	e project wor	k		
C very much	C much	C somewhat	C not much	C hardly at all
4. In my classroom, I also encourage students to use transactional communication in order to promote skills they need in their professional life				
$^{\rm O}$ very much	C much	C somewhat	C not much	C hardly at all

CLII _Matrix _ Teacher Comnetences _ example 2 Learning - Cognition

1. In my CLIL teaching the focus on language and on content are equally important

	O very much	O much	C somewhat	C not much	O hardly at all			
	2. I provide sufficient language support to help students fulfil their tasks							
	○ very much	C much	C somewhat	C not much	C hardly at all			
	3. I support different	student learni	ng styles in my CLIL cl	assroom				
	○ very much	C much	C somewhat	C not much	C hardly at all			
	4. I pay attention to I	now vocabular	y and concepts are acc	quired				
	O very much	O much	C somewhat	O not much	O hardly at all			
	5. In my CLIL teaching, I have developed specific strategies in terms of learning content and language in order to support the cognitive needs of individual students							
	C very much	C much	C somewhat	O not much	C hardly at all			
	6. I help learners to c	reate activitie	s that will help them to	ounderstand the co	ontent			
© Gerhard Bach	C very much	C much	○ somewhat	O not much	O hardly at all			

It's time to talk CLIL

© Gerhard Bach

Worksheets

Worksheet 1

- Worksheet 2
- Worksheet 3
- Worksheet 4
- Worksheet 5
- Worksheet 6
- Worksheet 7
- Worksheet 8
- Worksheet 9
- Worksheet 10
- Worksheet 11

CLIL – Assessment

Gerhard Bach CLIL Consultant (University of Bremen, Germany)

Module M1: Task-based Learning

Worksheet 1: Lernerprofil "Lisa" German version

Beispiel: Lisas Eintrag im Lerntagebuch - pädagogisch betrachtet: Was sagen die Einträge über Lisa aus? Ich mag Englisch, weil wir da raus dürfen und <u>englische</u> Spiele spielen 1 und englische Lieder singen. Am liebsten mag ich im Buch die Geschichten lesen. Wenn ich lese, 2 schau ich die Bilder an und dann kann ich die Wörter besser sagen. Wenn ich schreibe, denke ich auch 3 an die Bilder. Ich finde es lustig, wenn ich "how are you" zu meiner 4 Lehrerin sage auf dem Pausenhof und sie macht große Augen. Manchmal spreche ich lustige Wörter nur so für mich. Blöd find' **5** ich Rechnen auf Englisch, die Zahlen hören sich so komisch an: "fourteen", "fifteen" und so weiter. 11

Module M1: Task-based Learning

Worksheet 1: Learner Profile "Lisa" English version

Module M1: Task-based Learning

Worksheet 2: Learner profile "Richard"

Module M1: Task-based Learning

Worksheet 3

Task:

Design a task-based scenario. Subject-matter area: your choice. Learner age: 10 The scenario needs to reflect the characteristics listed below. Be prepared to explain your scenario by providing concrete answers to these questions: Source: <u>https://www.teachingenglish.org.uk/article/criteria-identifying-tasks-tbl</u>

- 1. How does the activity engage learners' interest?
- 2. Is there a primary focus on meaning?
- 3. Is there a goal or an outcome?
- 4. Is success judged in terms of outcome?
- 5. Is completion a priority?
- 6. Does the activity relate to real world activities?

Module M2: CLIL

Worksheet 4

Compare the brief (narrow) and the broad (extensive) definition of CLIL. What is the advantage of a brief definition over a broad one? What is the advantage of a broad definition over a brief one? To what extent are the 4 Cs recognizable in each?

Definition	Comments
CLIL is "a dual-focused educational approach in which an additional language is used for the learning and teaching of content and language with the objective of promoting both content and language mastery to pre-defined levels" (Frigols- Martín et al. 2011)	
"CLIL is an instructional concept in which specific subject-matter, such as Art, Music, Physics, History, or Physical Education, is taught in a language different from the mother tongue. Language and content are learned in an integrative manner. In working with authentic learning materials, the learners expand their language competence and, at the same time, gain a deeper understanding of the subject matter in question. The added value resulting from this dual approach can be found in different areas inside and outside of the school environment. In addition, content and language integrated learning in real-life and context-specific situations promotes the development of intercultural competence." (Bach 2013)	

Module M2: CLIL – Worksheet 5 and Handout

Handout BICS / CALP / LOTS / HOTS

BICS: Basic Interpersonal Communicative Skills

Those skills needed for everyday conversational talk. Examples are: greetings, stating likes and dislikes, describing the weather. ... Tasks associated with BICS are usually less demanding. Cognitive processes linked to BICS include: identifying specific information, naming objects, matching and sorting objects into sets.

CALP: Cognitive Academic Language Proficiency

This is the language competence required for studying curricular subjects in a non-native language. CALP refers to the language of academic learning. The language learned is cognitively demanding and often impersonal, e.g. listening to lectures on abstract topics, writing essays. ... Cognitive processes linked to CALP include: justifying opinions, forming hypotheses and evaluating evidence.

LOTS: Lower order Thinking Skills

Skills such as remembering, understanding and applying new subject knowledge. Learners develop LOTS for example when they recognize new vocabulary, classify, give examples and compare objects. Lower-order thinking can involve the use of basic or advanced vocabulary

HOTS: Higher Order Thinking Skills

Skills such as analyzing, evaluating and creative thinking. These develop reasoning skills, critical judgment and producing new ideas, e.g. How can we change the design of the building to make it more energy efficient? Higher-order thinking involves the use of advanced language.

hen developing curriculum for your class, keep this list nearby. This will help you determine the level of sponse you are anticipating from your students.	
Knowledge	Count, Define, Describe, Draw, Find, Identify, Label, List, Match, Name, Quote, Recall, Recite, Sequence, Tell, Write
Comprehension	Conclude, Demonstrate, Discuss, Explain, Generalize, Identify, Illustrate, Interpret, Paraphrase, Predict, Report, Restate, Review, Summarize, Tell
Application	Apply, Change, Choose, Compute, Dramatize, Interview, Prepare, Produce, Role-play, Select, Show, Transfer, Use
Analysis	Analyze, Characterize, Classify, Compare, Contrast, Debate, Deduce, Diagram, Differentiate, Discriminate, Distinguish, Examine, Outline, Relate, Research, Separate,
Synthesis	Compose, Construct, Create, Design, Develop, Integrate, Invent, Make, Organize, Perform, Plan, Produce, Propose, Rewrite
Evaluation	Appraise, Argue, Assess, Choose, Conclude, Critic, Decide, Evaluate, Judge, Justify, Predict, Prioritize, Prove, Rank, Rate, Select,

Powered by: The Online Teacher Resource (www.teach-nology.com)

© Teachnology, Inc. All rights reserved.

Module 2: CLIL

Worksheet 5:

Communicative and cognitive processing (Use Handout above as a reference tool)

Basic questions:

- How do we structure specific content, so that communicative & cognitive competences can develop?
- In what way does high or low complexity impact thinking processes?
- What tools can we use to encourage learners to engage in thinking processes at different levels of competence and process these in appropriate language?

Example Topic "Food". Elementary grade level. Age approx. 10 years.

Task for learners: (do this first!)

- 1. Name six fruits in the picture.
- 2. Find something that is not round and not square.
- 3. Group these food items into *"fruits"* and *"vegetables"*.
- 4. Do you know other kinds of fruit or vegetable?
- 5. Can any of these be grown in your area, too? Why? If not, why not?
- 6. Write a recipe for a vegetable soup or a fruit salad.

Teacher task: (now do this!)

Assign each of the above tasks to one category on the Bloom taxonomy and give reasons for your choice; your choice needs to reflect the complexity of the task in question

Remember – understand – apply – analyze – evaluate – create (bottom to top)

Module 2: CLIL Worksheet 6

Example: advanced CLIL, secondary level. Year 4 in foreign language. Subject matter area Geography – Urban space as living space.

Teacher task: Develop questions for a worksheet based on this picture: (Use Handout above as a reference tool)

LOTS (lower order thinking skills) : 1 Remember:

2 Understand:

3 Apply:

HOTS (higher order thinking skills): 1 Analyze:

2 Evaluate:

3 Create:

Module 2: CLIL Worksheet 7

Task:

Trainees analyze a STEM lesson plan based on C2 and C3 domain characteristics. The lesson plan is provided as a separate pdf-document. It is available only in German.

Spanish Trainers:

The topic is widely used in CLIL, and should be available in Spanish, too.

Module 3: STEM Worksheet 8

The design cycle

Task 1:

Trainers propose a topic.

Trainees design a task using the 5-step *s:fl* CLIL-STEM cycle.

Task 2 (alternative or additional): Trainers select a model lesson plan. Trainees analyze the plan using the 5-step *s:fl* CLIL-STEM cycle

Module 3: STEM Worksheet 9

Trainers provide the CLIL-STEM lesson plan: "Polygons and Polyhedra" (provided as a separate pdf-document)

Trainees analyze it for its STEM potential answering the questions listed below. Trainees will be able to pinpoint items in the lesson plan to underscore their analysis.

- 1. Does the task / experiment present a real and compelling task challenge?
- 2. How will students relate to the task?
- 3. Does it allow for multiple acceptable and creative solutions?
- 4. Does it integrate important STEM content in an age-appropriate manner?
- 5. Is the design cycle used as an approach to solve the task?
- 6. Does the approach reflect a student-centered, hands-on teaching and learning experience?
- 7. Do the results lead to the design and creation of a technique, technology, or prototype?
- 8. Does it engage students in purposeful teamwork?
- 9. Is there a clear focus on problem solving (testing a hypothesis, its solution, and the evaluation of its results)?
- 10. How does it involve students in communicating their design, experiment, and results in oral and written form, appropriate to their L2 competence level?

(Source: Anne Jolly. Adapted for *s:fl* from:

http://www.stem-by-design.com/how-to-analyze-a-lesson-for-stem-potential/)

Module 4: Lesson Planning Worksheet 10

Task: Plan a CLIL-STEM lesson

In the planning process, you can use as a general guideline the **Planning Inventory** provided below (Source: adapted from *TKT Course CLIL Module, p.* 31).

What are my teaching aims? (= objectives)

- 1. What will learners know and be able to do at the end of the lesson which they didn't know or couldn't do before the lesson? (= outcomes)
- 2. What subject content will the learners revisit and what will be new?
- 3. What communication will take place? (BICS / CALP)
- 4. Which thinking and learning skills will be developed? (LOTS / HOTS)
- 5. Which tasks / experiments will learners be involved in?
- 6. What scaffolding is provided to make learning more effective?
- 7. Which classroom management activities are planned?
- 8. What language support will be needed for communication of content, thinking and learning? (4Cs dynamic model)
- 9. Which materials and resources will be provided to support the task / experiments?
- 10. Which generalization / transfer possibilities are made available?
- 11. How will learning processes and outcomes be assessed?
- 12. How will teaching processes and outcomes be assessed?

Since STEM is clearly output-oriented as well as competence-oriented, the objectives specified in the lesson plan are competence-based. They are formulated as "can-do"-statements. "Can-do"-statements are formulated in two areas – knowledge and skills: "The students will know …", "The students will be able to … ".

Note:

The "Lesson planning template" and "Assessment Criteria Checklist" are provided as separate documents.

Module 5: Assessment Worksheet 11

Task: Trainees will study the observation checklist and discuss its potential for professional improvements with peers (plenary). Cross-referencing to the "Assessment Checklist" is encouraged.

Note: The Observation Checklist is provided as a separate document.